
AD-A270 550I!1111 lU lii fI ll Hl

A Methodology
for Formal Hardware Verification,

with Application to Microprocessors

Derek Lee Beatty DTIC
August 29, 1993 ELECTE

CMU-CS-93-190 S OCT 14 1993 D
A

Computer Science Department
Carnegie Mellon University

5000 Forbes Avenu(

Pittsburgh, PA 15213-3891 USA

Thesis committee:
Randal E. Bryant, Chair
Edmund M. Clarke, Jr.

Allan L. Fisher
Carl-Johan H. Seger (Univ. of British Columbia)

Copyright @1993 Derek Lee Beatty

Týhi documeni hcs been apprved
foz -ubli- raleaoe and sale; its
di tnibution is unlzwited.

This research was sponsored in part by an NSF fellowship and in part by the Avion-
ics Laboratory, Wright Research and Development Center, Aeronautical Systems Divi-
sion (AFSC), U. S. Air Force, Wright-Patterson AFB, OH 45433-6543 under Contract
F33615-90-C-1465, Arpa Order No. 7597.

The views and conclusions contained in this document are those of the author and
should not be interpreted as representing the official policies, either expressed or implied,
of the U.S. Government.

9 i I 8 93-24004
fIlllifllflfl lI



Keywords: computer-aided engineering (CAE), computer-aided design (CAD).
VLSI design and validation, formal hardware verification methodologies, hardware
description languages (HDLs), specification techniques, pre- and post-conditions,
computation by abstract agents, string functions, marked strings, automata theory,
discrete-event simulation, switch-level simulation, symbolic simulation, COSMOS
symbolic switch-level simulator, partially-ordered system models, trajectory eval-
uation, symbolic computation, algebraic manipulation, binary-decision diagrams
(BDDs), verification methodologies, microprocessor validation, Hector micropro-
cessor



•egle School of Computer Science

DOCTORAL THESIS
in the field of

Computer Science r Q•Mr .

A METHODOLOGY FOR FORMAL HARDWARE VERIFICATION,
WITH APPLICATION TO MICROPROCESSORS

DEREK BEATTY EeTG777T

Submitted in Partial Fulfillment of the Requirements K- - - - _"

for the Degree of Doctor of Philosophy

ACCEPTED: R

TH fS COMMITTEE CHAIR DATE

j9I~1 4J DEPARTMENT HEAD /;/DATE

APPROVED:

0DEAN DATE



Abstract

Microprocessors are now ubiquitous, but their design is not without difficulties.
Numerous microprocessors have been introduced only to find-sometimes years
later-that they contain mistakes. The need for better ways of checking designs is
clear. This research develops a methodology for formally verifying data-intensive
circuits against abstract state machines defined bv assertions, and Apphies it to
show that a microprocessor circuit implements its intended instruction set.

"Implementation" is a formal relation between input-output sequences: of an
abstract state machine, and of a circuit. This simple abstract model of behavior
is reconciled with concepts from digital-systems design including dynamic logic,
pipelining. multi-phase clocks, and a separate memory system. The methodology
structures proof of implementation using a series of decompositions. It exposes
internal system state. It dissects sequences into their component transitions (using
a new formalism called marked strings to reason about overlapped operation). For
processor verification it also abstracts away most of the memory state. Making
these simplifications from global I/O behavior once, in the methodology, allows
the focus when verifying a circuit to be on the localized effects of single state
transitions.

Verifying a circuit then consists of a few steps. The user specifies intended
behavior by giving high-level assertions denoting state transitions (much like a
Hoare logic of an assembly language), plu,; an additional mapping of abstract
state onto circuit state incorporating the temporal movement of state through
pipeline registers. The verifier makes consistency checks on the state mapping,
then simulates the circuit symbolically using patterns generated by mapping the
state transitions onto the circuit. A circuit passing these tests correctly implements
the abstract state machine. The verifier is based upon reduced, ordered, Binary-
Decision Diagrams (BDDs), and operates at the switch level, but these details are
not required by the methodology.

The verifier has been used to check initialization, response to interrupt, and
execution of several instructions of a pre-existing, 16-bit nMOS microprocessor
called Hector, which is roughly similar to the DEC PDP-1t. The specification was
hand translated from a pre-existing instruction-set simulator, and the circuit was
extracted from a description of the mask geometry used for actual chip fabrication.

v



in memory of
Charlotte Money Beatty

and of
Clinton Douglas Hester



Acknowledgements

Although a doctoral thesis is the work of an individual, only the help of many
others makes one possible. The department h- , been a great place to work, and
the facilities staff kept equipment running and files backed up (and responded
promptly [on a holiday!] when 1 thought sup -d meant "debug" and it really
meant "delete"). I cannot overstate the help of my committee: my advisor Randy
Bryant, and Ed Clarke, Allan Fisher, and Carl Seger. Randy, particularly, steered
me toward the important problems associated with the methodology, and away
from diversions too numerous to name. Had he not convnced me to throw out
my original theory, the middle of this thesis would have been much longer (!) and
its proofs more difficult. If any elegance can be found in this work it is due to his
guidance. Ed suggested the pictures that accompany many of the proofs. Carl's
enthusiasm for doing things right saved me from several errors. The opportunity to
visit him and Sheila for a week during Randy's sabbatical (despite their own move)
was a high point of that year. Allan encouraged me when I needed encouragement,
and advised on other endeavors as well as research.

I owe much to others as well. I learned too late to keep a list of names.
So although I thank colleagues and friends far and near: Peter Andrews, Dimitri
Avresky, Joel Bartlett (and Digital Equipment Corporation), Soumitra Bose, Chris
and Aksel Bothner-By, Jerry Burch, Karl Brace, Kyeongsoon Cho, Luc Claesen,
Kevin Deak, Masahiro Fujita, Duke Groebe, Nagisa Ishiura, Mark Horowitz, Larry
Huang, Sea-Way Jan, Jeff Joyce, Manpreet Khaira, David Long, Roland Luthi,
David Maynard, Ken McMillan, Manish Pandey, Carl Pixley, Richard Rami, Rick
Rudell (and Synopsys), Carlo Sequin, Tom Sht'ffier, Bebb Wheeler Stone, Victor
Yodaiken, Gary York, Jerry Warren, Dan Weise, Judson Wiley III for their in-
dividual contributions, I must apologize to those I have surely forgotten, and to
all mentioned for an alphabetical list instead of specific thanks. My office mates,
Richard Wallace, Olin Shivers, Allan Heydon, Hank Wan, Herman Herman, and
Nina Zumel, put up with my quirks. I honed many arguments against the stone
of their skepticism. Special thanks go to Tom Miller for giving me access to the
Hector design, and for permission to reproduce Figures 8.1, 8.3, and 8.2. While
typesetting this thesis my favorite book was Paul W. Abrahams' 7TX for the Im-
patient.

Don Hester was my first mcntor, and deserves special thanks for his faith and
advice over half my life. It was a privilege to have been a friend of his son Clint.
My father Lee has always encouraged me, as did my mother Charlotte during her
life, and now in memory.

Finally, to someone who too often came last as I conducted this work I owe my
greatest thanks: my wife Cheryl Dragel, who made time for me despite law school
and the bar exam. Her love sustained me during the dark times, and made life
sweeter during the good.

vii



viii



Summary Contents

I Preliminaries 1

1 Introduction 3

2 Verifying some simple sequential circuits 21

II Methodology 51

3 Machines and declarative specification 53

4 Simulation and machines 99

5 Implementation 111

6 Proving implementation 125

7 Applying the methodology 147

III Case study 185

8 Hector specification 187

9 Hector verification 209

IV Postliminaries 241

10 Conclusion 243

Bibliography 261

A A theory of marked strings 283

ix



x SUMMARY CONTENTS

B Formal specification of Hector 307



Contents

I Preliminaries 1

1 Introduction 3
1.1 Overview of the thesis ....... ......................... 4
1.2 Microprocessor design errors ........................... 6
1.3 Brief catalog of some recent microprocessor bugs ............... 7

1.3.1 Relation to this thesis ...... ..................... 9
1.4 Verifier errors .................................... 10

1.5 Related work ........ .............................. 10
1.5.1 "Verification" .................................. 11
1.5.2 Formal hardware verification ........................ 11

1.5.3 Microprocessor verification ........................ 19
1.6 Contributions of this thesis ............................. 20

2 Verifying some simple sequential circuits 21

2.1 Latch ......... .................................. Z
2.1.1 Specification .................................. 26

2.1.2 Mapping .................................... 27

2.1.3 Different implementations ........................ 28
2.1.4 Specification language . . . . .............. 29
2.1.5 Summary ........ ............................ 30

2.2 The stack from Mead and Conway ........................ 33

2.2.1 Verification ....... ........................... 39

2.3 Verifying decomposed systems ........................... 45
2.4 Chapter summary ................................... 50

II Methodology 51

3 Machines and declarative specification 53
3.1 Mathematical preliminaries ....... ...................... 53

3.1.1 Strings and marked strings ........................ 54

3.1.2 Homomorphisms ....... ........................ 61

xi



xii CONTENTS

3.1.3 Set-valued functions and nondeterminism ............... 62
3.1.4 Set-valued homomorphisms ........................ 63
3.1.5 Compositions of homomorphisms ................... 63
3.1.6 Partial functions ....... ........................ 63

3.2 Agents and machines ....... .......................... 63
3.2.1 Abstract agents ....... ......................... 64
3.2.2 Sequential machines ....... ...................... 64

3.3 Core of a specification language .......................... 66
3.3.1 A core subset ....... .......................... 67
3.3.2 Semantic equations ............................. 70
3.3.3 Formalization of assertions ........................ 77

3.4 Syntax of a specification language ........................ 78
3.4.1 Type declarations ............................... 80
3.4.2 State variables ....... ......................... 82
3.4.3 Assertions ....... ............................ 82
3.4.4 Formulas .................................... 82
3.4.5 Expressions ....... ........................... 85
3.4.6 Local definitions ....... ........................ 85
3.4.7 Examples ........ ............................ 92

3.5 Related work ........ .............................. 96
3.5.1 Model of computation ...... ..................... 96
3.5.2 Specification of hardware and processors ............... 97

3.6 Chapter summary ................................... 98

4 Simulation and machines 99
4.1 Switch-level model ....... ........................... 101

4.1.1 Aspects of switch-level models ..................... 104
4.112 Symbolic analysis .............................. 105
4.1 3 Simulation ................................... 106
4.1.4 Symbolic simulation ...... ...................... 106
4.1.5 Accuracy and precision .......................... 106

4.2 The Moore machine defined by a circuit ................... 107
4.3 Related work ........ .............................. 108
4.4 Chapter summary ................................... 109

5 Implementation 111
5.1 Mappings between agents ..... ....................... .111
5.2 Implementation between agents ......................... 111

5.2.1 Informal motivation ............................ . !1
5.2.2 Direction of the mapping ......................... 112
•5.2.3 Formal definition of implementation ................. 115
5.2.4 Example .................................... 118



CONTENTS xiii

5.3 Related work .............................. 121
5.3.1 Roles of abstraction ............................ 121
5.3.2 Abstraction functions ............................ 122
5.3.3 Input-output relationships ........................ 122

5.4 Chapter summary ................................... 123

6 Proving implementation 125
6.1 Relation between agents ...... ........................ 125

6.1.1 Mappings ....... ............................ 125
6.1.2 Accepting agents ....... ........................ 126
6.1.3 Exposing and hiding internal state .................. 128

6.2 Specialization to mach' es ............................. 129
6.2.1 Obedience ................................... 130
6.2.2 Behavior fragments ............................. 130
6.2.3 Transitions ....... ........................... 131
6.2.4 Marked strings and overlapped concatenation .......... 132

6.3 Assertions ........ ................................ 135
6.4 Distinction and conformity ............................ 139

6.4.1 Distinction ................................... 139
6.4.2 Conformity ....... ........................... 140

6.5 Related work ........ .............................. 142
6.6 Chapter summary ................................... 145

7 Applying the methodology 147
7.1 Decomposition ........ ............................. 147

7.1.1 Compositions ....... .......................... 147
7.1.2 Behavior of decompositions ........................ 150
7.1.3 Checking decomposed systems ..................... 151
7.1.4 Applying decomposition .......................... 151
7.1.5 Other applications ...... ....................... 152

7.2 Representational issues ............................... 154
7.2.1 Representation of state subspaces ................... 155
7.2.2 BDDs: binary-decision diagrams .................... 157
7.2.3 Symbolic indexing ...... ....................... 161

7.3 Elements of a mapping language ......................... 163
7.3.1 Requirements ....... .......................... 163
7.3.2 Syntax ..................................... 164
7.3.3 Semantics ....... ........................... 167

7.4 Trajectory evaluation ................................. 174
7.4.1 Efficiency ....... ............................ 178

7.5 Verification tool ...................... ............. .. 179
7.5.1 Usability .................................... 179



xiv CONTENTS

7.5.2 Visualization aids ..... ................... 181
7.5.3 BDDs and efficiency. ............................ 182

7.6 Related work ........ .............................. 183
i.7 Chapter summary ................................... 183

III Case study 185

8 Hector specification 187
8.1 Traditional specification of an instruction set ............. 187

8.1.1 A typical programmer's reference manual .............. 187
8.1.2 Instruction-set simulators ..... ................... 189

8.2 Introduction to Hector ....... ........................ 190
8.2.1 The Hector instruction-level simulator ................ 193

8.3 Formal specification of Hector .......................... 194
8.3.1 Types and system variables ....................... 195
8.3.2 Constants ...... .......................... 195
8.;3.3 Auxiliary functions ...... ....................... 196
8.3.4 Assertions .................................. 197
8.3.5 I/O mappings ....... ......................... 203

8.4 Related work ........ .............................. 207
8.4.1 Hector ....... .............................. 207
8.4.2 Processor specification .......................... 207

8.5 Chapter summary ................................... 207

9 Hector verification 209
9.1 Modeling of Hector ....... ........................... 210
9.2 Preparation of Hector ................................ 211

9.2.1 Simulation ...... ............................ 211
9.3 Verification of Hector ................................. 213

9.3.1 Initialization ................................. 213
9.3.2 Instruction set ................................ 215
9.3.3 Interrupts ....... ............................ 221

9.4 Observations ...................................... 222
9.4.1 Performance .................................. 222
9.4.2 Hector bugs ....... ........................... 226
9.4.3 Assumptions .................................. 227
9.4.4 Difficulties ................................... 229

9.5 Related work ........ .............................. 232
9.5.1 FM8501 ....... ............................. 233
9.5.2 Cayuga ........ ............................. 234
9.5.3 Tamarack ....... ............................ 235



CONTENTS xv

9.5.4 V iper . . . . . . . . . .... . . . . . . . . . . . . . . . . . . .136
9.5.5 SECD machine ......................... 237
9.5.6 Other processors ....... ........................ 238

9.6 Chapter summary ................................... 238

IV Postliminaries 241

10 Conclusion 243
10.1 Summary ........ ................................ 243

10.1.1 Objects in the methodology ...................... 244
10.1.2 Relation of concepts ............................ 248

10.2 Evaluation ........................................ 249
10.2.1 Hector vs. modern processors ..................... 250
10.2.2 Limitations ....... ........................... 251

10.3 Future work ...................................... 253
10.3.1 Theory ..................................... 254
10.3.2 Tools ...................................... 255
10.3.3 Circuits ....... ............................. 259

10.4 Final remarks ........ ............................. 260

Bibliography 261

A A theory of marked strings 283
A.1 Motivation ........ ............................... 283
A.2 Basic definitions ....... ............................ 284
A.3 Ordering and lattice properties .......................... 285
A.4 An overlapped concatenation operator ..................... 290
A.5 Properties of overlapped concatenation .................... 297
A.6 Additional properties and definitions ..................... 302

B Formal specification of Hector 307
B.1 Introduction ....... ............................... 307
B.2 Notation ......................................... 307

B.2.1 Scheme ....... ............................. 308
B.2.2 Specification language ........................... 308

B.3 Abstract specification of Hector .......................... 309
B.4 Mapping onto the Hector chip .......................... 323



xvi CONTENTS



List of Figures

2.1 A sim ple latch .. ........ ...... ......... .... . 22
2) Timing diagrams for simple latch ....... ....... .... . 23

2.3 Timing of the control signal of the latch ... ..... .. .... . 24
2.4 Timing for load operation of latch ....... ....... .... . 31
2.5 Two successive latch operations ........ ....... ..... 31
2.6 Equivalent latch .. ........ ....... ....... .... . 31
2.7 Timing diagram of equivalent latch . . . . . . . . . . . . . . . . . . 32
2.8 Abstract specification of a latch . . . . . . . . . . . . . . . . . . . . 32
2.9 Stack cell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.10 Timing diagram for stack cell . . . . . . . . . . . . . . . . . . . . . 34
2.11 Stack control circuit . . . . . . . . . . . . . . . . . . . . . .. . . . 35
2.12 Timing diagram for multiplexed stack control . . . . . . . . . . . . 35
2.13 Attempt to align pop to follow hold operation . . . . . . . . . . . . 36
2.14 Revised timing diagram for multiplexed stack control . . . . . . . . 37
2.15 Timing diagram for stack operations . . . . . . . . . . . . . . . . . 37
2.16 Sequence of stack operations . . . . . . . . . . . . . . . . . . . . . . 38
2.17 10 behavior of abstract stack . . . . . . . . . . . . . . . . . . . . . 39
2.18 10 behavior of stack circuit . . . . . . . . . . . . . . . . . .. . . . 39
2.19 Behavior of abstract stack, including state . . . . . . . . . . . . . . 40
2.20 Behavior of stack circuit, including state . . . . . . . . . . . . . . . 41
2.21 Transitions of stack circuit . . . . . . . . . . . . . . . . . . . . . . . 41
2.22 Symbolic transition for push operation . . . . .. . . . . . . . . . . 42
2.23 Symbolic patterns to verify push operation . . . . . . . . . . . . . . 43
2.24 Two assertions, covering different storage bits . . . . . . . . . . . . 44
2.25 Decomposition of 3-bit stack into 2-bit stack and additional cell . . 45
2.26 Hypothetical abstract sequence of decomposed stack . . . . . . . . . 46

2.27 Behavior of decomposed stack circuit . . . . . . . . . . . . . . . . . 4 7
2.28 Transitions of decomposed stack cell . . . . . . . . . . . . . . . . . 48
2.29 Symbolic pattern for decomposed stack cell . . . . . . . . . . . . . . 49

3.1 Overlap of timing diagram . . . . . . . . . .. . . . . . .. . . . . . 54
3.2 Skeleton of a marked string . . . . . . . . .. . . . . . .. . . . . . 55
3.3 Parts of a marked string . .. . . . . . . . . . . . . . . .. . . . . . 58

xvii



xviii LIST OF FIGURES

3.4 Skeletons of overlapped concatenation ..................... 59
3.5 Dropping the last marker .............................. 60
3.6 Dropping the last marker and aligning in preparation for overlapped

concatenation ..................................... 60
3.7 Formation of an agent from a function ...................... 64
3.8 Syntax of specifications (language subset) ................... 67
3.9 Syntax of type definitions (language subset) ................. 67
3.10 Syntax of state variable declarations (language subset) .......... 68
3.11 Syntax of assertions (language subset) ...................... 68
3.12 Syntax of formulas (language subset) ................... 69
3.13 Syntax of expressions (language subset) ..................... 69
3.14 Abstract specification of latch (in subset language) ............ 70
3.1.5 Transitions of cases of "load" assertion ...................... 74
3.16 Transitions of "load" assertion .......................... 75
3.17 Transitions of cases of "hold" assertion ..................... 76
3.18 Transitions of "hold" assertion ........................... 76
3.19 Transitions of latch specification ........................ 77
3.20 Syntax of specifications ................................ 79
3.21 Syntax of type declarations ....... ...................... 80
3.22 Syntax of restricted expressions .......................... 81
3.23 Syntax of system state variable section ..................... 82
3.24 Syntax of assertion section ............................. 83
3.25 Syntax of an assertion ....... ......................... 83
3.26 Syntax of a formula .................................. 84
3.27 Syntax of expressions ................................. 85
3.28 Syntax of Boolean expressions ........................... 86
3.29 Syntax of word expressions ............................. 87
3.30 Syntax of integer expressions ............................ 88
3.31 Syntax of enumeration expressions ...... .................. 89
3.32 Syntax of definitions of constants and functions ............... 90
3.33 Example of a finite-state machine ........................ 92
3.34 SMAL definition of a state machine ........................ 93

4.1 Ternary symbolic simulation ............................ 100
4.2 Transistor symbols ....... ........................... 102

5.1 Dynamic latch ..................................... 114
5.2 Bad implementation of exclusive-OR ..................... 116
5.3 Bad implementation of a serial AND gate ................... 117
5.4 Specification of analog buffer ............................ 119
5.5 Realization of analog buffer ...... ...................... 120



LIST OF FIGURES xix

6.1 State obedience .. ............................ 129
6.2 Overlapped concatenation of 2+-marked strings .............. 133
6.3 Specification illustrating need for distinction ................ 138
6.4 Conformity of input sequence under NRZ code ............... 141

7.1 Wiring diagram for machine composition ................... 148
7.2 Composition of two machines ...... ..................... 149
7.3 Stack, with "dummy" depth counter ..................... 152
7.4 Circuit requiring adaptive reset .......................... 153
7.5 Circuit requiring adaptive reset .......................... 154
7.6 Construction of BDD from truth table ..................... 158
7.7 BDD operation ....... ............................. 159
7.8 Shared BDD structure ....... ........................ 160
7.9 Good and bad variable orders .......................... 161
7.10 Representation of constant indexing ....................... 162
7.11 Representation of symbolic indexing ...................... 163
7.12 Highest level of syntax of a mapping language ............... 164
7.13 Syntax of node definitions ...... ....................... 165
7.14 Syntax of mapping definition section ..................... 165
7.15 Syntax of auxiliary definitions .......................... 166
7.16 Syntax of map definitions ...... ....................... 167
7.17 Syntax of instantaneous formulas ........................ 168
7.18 Syntax of temporal formulas ............................ 169
7.19 Mapping of latch ....... ............................ 170

8.1 I/O pins and registers of the Hector microprocessor ........... 191
8.2 Operand addressing modes of Hector ..................... 191
8.3 Instruction set of Hector .............................. 192
8.4 Fragment of Hector simulator .......................... 193
8.5 Mapping of RESET input ...... ....................... 205
8.6 Mapping of NMI input ............................... 205
8.7 Mapping of RUN input (2 cycles) ........................ 206
8.8 Mapping of RUN input (5 cycles) ........................ 206

9.1 Verified Hector instructions ...... ...................... 210
9.2 Bus driver circuit modification .......................... 212
9.3 Consistency of antecedent and consequent mappings ......... .216
9.4 Temporal mapping of memory values ..................... 216
9.5 Carry condition of SUBC instruction ..................... 220
9.6 Verifier performance ....... .......................... 223
9.7 Charge sharing in a multiplexor path ...................... 224
9.8 Values on the result bus during verification of instruction fetch . . . 225



xx LIST OF FIGURES

9.9 Race condition detected by model weakening ................ 226
9.10 Hector register cell ....... ........................... 228

10.1 Objects and tests of methodology ........................ 245
10.2 Possible objects of the methodology ....................... 246
10.3 Venn diagram of concepts ...... ....................... 249
10.4 A possible partial order for the VHDL 9-valued model......... 256

A.1 Overlap of timing diagram ............................. 283
A.2 Hasse diagram, one symbol ............................ 290
A.3 Hasse diagram, two symbols ............................ 291



Part I

Preliminaries



Chapter 1

Introduction

Microprocessors are complicated artifacts. When a new microprocessor is intro-
duced, it contains design errors. No manufacturer is immune. The need for better
ways oi checking designs, before they are fabricated, packaged, and sold, is clear.

This thesis addresses the processor correctness problem and provides a step
toward a solution. It considers the following issues:

"* the question of an appropriate criterion for correctness,

"* how to specify the instruction set that a processor s supposed to provide,

"* how to expand such a specification to include details of a particular circuit
implementation, and

"* how to check such an expanded specification using a symbolic simulator.

The goal of the work described here is to develop a methodology for formally
verifying pipelined hardware that can accommodate existing practice. This re-
quires that the methodology make use of existing principles and models, formal-
izing existing informal usage when possible. The touchstone of many hardware
verification attempts in the past has been a microprocessor, so the methodology
has been developed with microprocessor verification in mind.

The design of a microprocessor is a bridge between software and digital circuit
theory. Consequently, a methodology for verifying a microprocessor must encom-
pass some formalism from each domain. From the software domain we adapt the
notion of axiomatic semantics-that the meaning of each statement in an imper-
ative programming language can be described precisely by an assertion giving the
assumptions needed in order to execute the statement, and the guarantees estab-
lished by executing it. From the hardware domain we adapt a circuit model.'

'We have chosen the switch-level model. This reflects our heritage. The choice of models
is somewhat arbitrary. Insofar as the methodology is concerned, a gate-level model would have
worked as well.

3



4 CHAPTER 1. INTRODUCTION

The key requirement of the circuit model is that it be a model within which those
circuits we wish to consider-in this case microprocessors-are actually designed.

Also from the hardware domain we recognize the notions of timing diagrams
and of pipelining. Formalisms that play the role of or express these concepts will
play an important role in our methodology. Finally, from the hardware domain we
adopt a unifying model of computation: Moore machines.

The methodology itself is carefully designed so as to properly account for sev-
eral subtleties of reasoning about circuit behavior. Nonetheless, many of the key
arguments are made at an abstract level, The thesis demonstrates the validitv of
the methodology by applying it to a real microprocessor., Hector, which I did not
design. However, the main topic of the thesis is the methodology rather than the
case study. A "methodology" is a collection of methods, rules, and principles.

T he Hector microprocessor was designed before the research described here
commenced, and was in no way designed with formal verification in mind. Hector
was intended to be a realistic pedagogical example of a microprocessor. A more
recent version of Hector (not treated in this thesis) has been proposed as part
of a data collection and telemetry system to be implanted into experimental ani-
mals. Although not a particularly modern architecture, Hector serves well as an
example for verification, because of its size and availability. Despite its compar-
atively small size, it poses significant challenges to verification. Its circuit design
was not deliberately made simple to facilitate verification. Verifying its complex
instruction set involves such problems as interactions of addressing modes, and a
variable-length instruction encoding. The specification of Hector was derived from
an instruction-level simulation of Hector written in the C programring language.
The switch-level model of Hector was extracted from the mask geometry used to
fabricate the actual chips.

The goal of verification is to show that two descriptions of a system are con-
sistent. One description, called the "specification," is taken to be correct. The
correctness of a second description, called the "realization," is then checked. If the
realization is correct (with respect to the given specification!), then we say that the
realization "implements" the specification. Some authors refer to the realization
with the term "implementation." I avoid this, so as to reserve the term to denote
a formal relation between two machines.

1.1 Overview of the thesis

This thesis consists of three main parts, with two appendices.
The first part is introductory. Chapter 1 is this introduction, which describes

the problem treated, as well as the thesis itself. Chapter 2 is a "manifesto" giving
intentious and motives by way of an extended example. The example is necessarily
treated at a superficial level, but it includes cross references to more detailed



1.1. OVERVIEW OF THE THESIS 5

treatment further in the thesis.
The next part develops the methodology. Each of its chapters has both a

practical and a theoretical content. Chapter 3 treats the specification of the be-
havior of data-intensive systems, in particular, processor instruction sets. It also
illustrates the way in which such specifications can be viewed as nondeterministic
state machines. Chapter 4 describes the model of circuit realizations used. It is a
generalization of the switch-level model for digital MOS circuits, which is an ac-
cepted model in the design community. This chapter also shows that such circuit
models can be viewed as nondeterministic state machines. Chapter 5 discusses
the notion of correctness. The ultimate notion of correctness is fairly simple, but
accuracy and intuitive appeal were not sacrificed for additional simplicity.

Up until this point, the chapters may seem somewhat disconnected, but chap-
ter 6 pulls its three predecessors together into the heart of the thesis. It proves
the central theorem of the thesis, the Overlap Theorem, which shows shows how
a specification can be mapped onto a circuit simulation model to yield patterns
that can be efficiently checked. A circuit passing such checks is correct according
to the previous definition of implementation.

Chapter 7 discusses several issues that must be addressed in order to apply the
methodology, including a way of mapping symbolic statements about instruction
sets into symbolic simulation patterns. It also discusses the decomposition of a
computer into its processor and its memory system. Instead of verifying an entire
computer consisting of a processor and a memory system, our goal is to verify a
processor. To do so, we assume the memory system system correct and check only
the processor. This greatly reduces the amount of state information that must be
considered, and also allows the claim that this thesis treats processor verification.
While this is not properly within the core of the methodology, it is a key to making
it practical.

The last part concludes the thesis with a case study. Chapter 8 describes the
Hector microprocessor design and discusses its formal specification. Chapter 9
describes the Hector chip, the mapping of the formal specification, and the verifi-
cation of Hector instructions. Chapter 10 contains a summary of this research and
its successes and failures, and outlines directions for continued work.

In addition to the body of its text, this thesis contains two appendices. Ap-
pendix A consists of an axiomatic development of an algebraic structure called
marked strings. The key idea in this thesis is that abstract states are repre-
sented in real systems by intervals of computation, which can be overlapped in a
carefully controlled way. Marked strings provide a mechanism for formalizing the
overlap.

Appendix B contains a specification for the Hector microprocessor, typeset
directly from the input files for the verifier.

Discussions of related work appear throughout the thesis. A general survey
of hardware verification, and a brief synopsis of microprocessor verification, ap-



6 CHAPTER 1. INTRODUCTION

pears in Section 1.5 (p. 10) Discussions of hardware description languages, and
of assertions, appear in Section 3.5.2 (p. 97). Discussion of the switch level model
appears throughout Chapter 4. Its application to formal modeling is mentioned
in Section 4.3 (p. 108). Works on abstraction, and notions of just what the term
"implementation" should mean. are discussed in Section 5.3 (p. 121). The relation
of this methodology to Hoare logic is explained in Section 6.5 (p. 142). The Hector
microprocessor, and processor specification, are discussed in Section 8.4 (p. 207).
Finally, a more detailed survey of microprocessor verification appears in Section 9.5
(p. 232).

1.2 Microprocessor design errors

Newly-introduced microprocessors contain design errors. Early, hand-designed
processors contained errors, and even modern computer-aided designs of great
economic importance continue to have errors.

Today, the "bug lists" accompanying microprocessor designs are usually closely
guarded industrial secrets,2 though such was not alwa s the case. The engineering
prototype of the Motorola 68000 processor was accompanied by a list acknowledg-
ing 12 bugs and 3 "architectural enhancements." Some are simple details, such
as flag bits set improperly, or exceptions that are improperly enabled or disabled.
But they include a vague, ominous warning that when the TAS (test-and-set) in-
struction occurs with certain addressing modes, the processor "does not execute
the instruction stream properly."

The desirability of a more reliable means to check microprocessor designs be-
fore fabrication is quite evident from bug reports in industry newsletters [97, 98].
Though the 486 microprocessor's bugs have gained notoriety recently, this prob-
lem is long standing. The 6502 microprocessor used in early personal computers
suffered an instruction-fetch bug. It was never corrected; programmers had to
take care to avoid it. National Semiconductor's PACE design, one of the first 16-bit
microprocessors, never saw widespread use. It is rumored that this was because it
was so buggy. Subsequent microprocessors-such as the Z8000 and 32016-were
buggy for years. The 88000 had floating-point problems for more than a year; it
was recently announced that there remains only one significant bug in this chip
(excluding clarification of its bus interface). Bugs in the R3000 and the 29000 have
been published recently. Though the 32GX32 is a derivative of the 32532, which
was available for several years; five bugs were known to remain in 1990, all in its
debugging facilities.

At least one microprocessor manual includes legal language prohibiting use of
the device in surgical implants and life support devices [189, title page]. 3

2 Although MIPS published the R4000 bug list [184].
"3 '[Our] products are not authorized for use as components in life support devices or systems



1.3. BRIEF CATALOG OF SOME RECENT MICROPROCESSOR BUGS 7

Modern microprocessors are not immune. For example, the Motorola 68040
[96] had at least three known problems. First, the test equipment used to test the
fabricated devices could not test to the full current spec of the chip's drivers, so
there is no confidence that they can indeed source or sink the specified amount
of current. This requires that the circuit design surrounding the processor in a
system be more conservative than would otherwise be required, to guarantee proper
operation. Second, the cache snooping logic gives erroneous information for an
instruction-cache fill. (Fortunately, there is little need to snoop the i-cache, since
multiprocessor algorithms based on self-modifying code are quite rare!) Finally.
the MOVE16 instruction, which is supposed to copy a 16-byte value, does not work.
It is unclear which, if any of these errors have been corrected in later revisions of
the design.

Intel Corporation's microprocessors suffer similar problems. For example. early
versions of the 386 microprocessor would stop if a DMA occurred during a floating-
point instruction. The last rumored bug found in the 386 allegedly came to light
in October 1990. though I have been unable to document this. It is said that early
i860 chips even had a bug in a shift instruction.

The superscalar SPARC processor was released later than anticipated due to
debugging difficulties.

1.3 Brief catalog of some recent microprocessor
bugs

A glance at the trade and popular press reveals dozens of articles on microprocessor
flaws [80].

A brief synopsis of the articles underscores the importance of the problem.

Intel Because of its prominence and importance, Intel Corporation is most visi-
ble. But Intel's share of problems is only proportionate. The publicity surrounds
two floating-point bugs in the Intel 486 microprocessor, discovered by Compaq in
November 1989, a bus interface bug discovered in January 1990, and some thermal
problems in a high-speed version, in August 1991.

July, 1989 Engineers at Alsys (a UK corporation) claim to have found a bug
in the 286 processor; Intel disagrees.

intended for surgical implant into the body or intended to support or sustain life Buyer agrees
to notify [us] of any such intended use use whereupon [our company] shall determine availability
and suitability of its product or products for the use intended."



S CHAPTER 1. INTRODUCTION

September, 1989 There are signs of possibly serious bugs in the D-step
80386 [220].

October, 1989 IBM ships a 486 upgrade board; Intel adm- 3 bugs but claims
that they do not affect applications [62]. Compaq finds bugs in the Intel 486 [110,
140. 248]: the news is reported in major newspapers [170, 252]. Many companies.

product plans become uncertain [215]. Intel says the bug will cause no delays in
production, and rushes a new metallization mask to its fabrication facilities [206].

November, 1989 A magazine warns its readers to avoid the early 486 chips
[255]. System designers report that the bugs in the 486 cause problems. One
company (in health care!) plans to use 486 chips despite bugs. The 486 bugs affect
the stock prices of Compaq, which delays products because of the bugs f164].
Compiler writers wait for the bugs to be fixed [143]. A respected industry analyst
condelmns vendors who announce 486-based computers while known bugs remain
in the chip [214]. Intel says it has fixed the 486 defect [153].

December, 1989 Intel plans free replacement of buggy 486's [122]. IBM
announces a 486-based PS/2. having previously pulled its 486 upgrade for the
PS/2 off the market, due to bugs [169]. Intel resumes 486 shipments [200, 218].

January, 1990 In the previous year, many 486 systems have been announced,
but few shipped, due to the bugs. A new bug is discovered in the 486, related to
interrupts and the bus interface; and makes the papers, though only minor delays
are expected [193, 250].

February, 1990 More vendors announce 486 boxes despite bugs [225]. The
bug is revealed: an EISA chip set runs some bus cycles in wrong order [223]. The
486 flaw is said to be "minor."

March, 1991 Longtime rival AMD claims that Intel's low-power 80386SL is
full of bugs.

April, 1991 In an interview, Intel engineers identify locating bugs as one of
their chief problems [63].

May, 1991 There is more discussion on bugs in the low-power 80386SL.
which had been announced the previous October.

August, 1991 The 50MHz 486 sometimes overheats. Intel stops production
of the part [171, 70. 104, 224, 249].



1.3. BRIEF CATALOG OF SOME RECENT MICROPROCESSOR BUGS 9

September, 1991 There is more discussion of the Intel 486 testing problem
[38] which is delaying products [111].

November, 1991 Zenith is said to be pleased with Intel's 386SL, despite its
bugs [152].

July, 1992 Intel delays debut of -P-5." its new microprocessor. to refine its
process but also to have more time to find bugs [221. 99, 251].

Motorola

September, 1990 The MNL68040 is delayed for a "few," -innocuous" bugs
[1951. Sun and Intel gather market share due to Motorola's delay [2,531.

November, 1990 Volume shipments of the '040 finally begin [216].

January, 1991 Motorola claims that production has reached parity with
demand [230].

March, 1991 Two full years after the 68040 was announced. ramp up is
underway 17].

Others

September, 1990 A bug in the TI TMS38053 "Falcon" microcontroller is
claimed to be responsible for problems with a token-ring network [138].

July, 1992 The Inmos T9000 is finally imminent, after having been delayed
due to a pipeline control flaw [190].

1.3.d Relation to this thesis

Clearly, avoiding design errors is the ideal. In its absence, better methods of
catching processor design errors early are desirable. In fact, since compilers may
be increasingly using instruction sequences in ways not envisioned by the machines'
architects [121], it is becoming even more important that all aspects of instruction
behavior be rigorously checked.

The work described in this thesis is a step along the road toward bug-free micro-
processors. The pages that follow develop and explore a methodology for verifying



10 CHAPTER 1. INTRODUCTION

functional properties of microprocessors. Some of the bugs that plague micropro-
cessor designs are beyond the scope of this work. There are many potential errors
which are not apparent when modeling a system at the switch or higher level. For
example, the Intel overheating bug is not a functional property. Sometimes errors
are induced by capacitive cou1 XL between transistor active areas and overlaying
metallization. However, functional errors are important to detect because they are
design errors that will affect every instance of the design.

1.4 Verifier errors

An-, kind of test is subject to four possible kinds of errors. Two are particularly
important. A bad verifier might indicate that a bad circuit is correct. or a verifier
might indicate that a good circuit is incorrect. Alternatively. a verifier might
indicate that a good circuit is correct. or that a bad circuit is incorrect, but do so for
the wrong reason. The first two types of errors can be termed "false positives" and
"false negatives," respectively. Ideally, none of these errors will occur. However. if
a verifier is based at any stage upon a proof procedure which is not complete (in
the logical sense), then it will be subject to false negatives. It can be worthwhile
to tolerate occasional, rare false negatives if there is a corresponding tradeoff that
yields improved performance. A verifier that is subject only to false negatives is
conservative. That is, when it says that a circuit is correct, the circuit is indeed
correct.

On the other hand, a verifier that is subject to false positives is a catastrophe.
It cannot be relied upon. When it says that a circuit is correct, we do not know
whether the circuit is actually correct, or whether a false positive has occurred.
False positives must be avoided.

The remaining two types of errors are less problematic. If a verifier indicates
correctness, but for the wrong reasons, no harm is done. If a verifier indicates
incorrectness for the wrong reason, we may waste time in trying to debug a circuit,
but at least we will not have committed the blunder of claiming that a buggy circuit
has been formally verified.

We will be careful to develop a conservative methodology.

1.5 Related work

The Soviet telephony engineer A. K. Kutti [156] made perhaps the earliest attempt
to distinguish the specification of the intended behavior of a sequential circuit from
the design of the circuit itself. He specified behavior by state tables. Unfortunately,
his work was obscure and it was decades before it was re-invented independently
[186].



1.5. RELATED WORK 11

1.5.1 "Ver-fication"

In the contemporary CAD (computer-aided-design) community (academic as well
as commercial), the term "verification" does not always denote an entirely rigorous
approach based on a formalism.

For example, Ernst and Bhasker [100] describe a system called Satya that can be
used used to "verify" a high-level synthesis system, under a set of restrictions (in-
cluding that there is no pipelining). The goal of the system is to show equivalence
between an "algorithmic-level" description and one at the logic level. The heart of
Satya is simulation driven by a random-pattern generator. The algorithmic-level
description is annotated with the output assignment generated by the synthesis
system in order to facilitate comparison.

1.5.2 Formal hardware verification

There are a number of surveys of formal hardware verification techniques [68, 67.
124, 123. 72]. McFarland's tutorial [172] contains a number of examples from
early techniques, but its coverage of more recent work in this fast-moving field is
unfortunately weak. Work related to model checking is condensed in [75]. Leonard
surveys computer specification in general [159]. Yoeli's tutorial collects a number
of classic papers [95]. There has been some side-by-side comparison of different
theorem-prover techniques [6, 229, 228].

Combinational verification

There has been much work on the verification of combinational circuits. Many
approaches consist of recursive algorithms based on Shannon expansions (e.g.,
[126]). Many such older algorithms are now subsumed by graph algorithms on
BDDs. BDDs (reduced, ordered binary-decision diagrams) are a canonical, graph
representation for Boolean functions [48, 54].

There has been a temptation among some to claim that it is straightforward
to extend techniques suitable for verifying combinational circuits to sequential cir-
cuits. Such claims should generally be viewed skeptically, but there are successful
cases, such as when the latches and timing of the specification and realization agree
[18].

Verification of combinational logic bas been used for years within IBM. Roth
[208] described a verification strategy for clocked designs. Automatically synthe-
sized designs were compared with hand-optimized designs using an algorithm that
exploited circuit structure. Roth later reviewed IBM's verification efforts on the
3081 design [207], and estimated that 8.5 years were saved by using logic synthesis
and comparing the synthesized logic with optimized logic produced by hardware
designers.



12 CHAPTER 1. INTRODUCTION

Grammar-based approach

A number of researchers have taken approaches based on graph grammars [106, 9,
3]. Such approaches generally restrict the set of possible circuits to those that can
be generated by the grammar, and are limited to combinational circuits. They can
also sometimes be used to check adherence to electrical design rules [21].

Model checking

Model checking is a powerful approach for verifying certain classes of circuits.
Properties are expressed in a logic. A system is verified against such a specifi-
cation by checking that it is a model (in the logician's sense of the word) of the
specification formula.

Bochmann [20] proposed analysis of circuits using temporal logic. Clarke and
his colleagues [73] have advocated model-checking and developed powerful al-
gorithms and implementations. McMillan [173] developed the symbolic version.
Coudert [851 developed a symbolic model checker for a restricted class of formu-
las. Bose and Fisher [26] developed a symbolic model checker based on a Cosmos
switch-level model. Their modeling approach was to introduce a state variable for
each input and each storage node in the network, and thereby construct a com-
plete model of an excitation function, so unlike the work in this thesis, there was
no partitioning of the specification into assertions.

Clarke and colleagues sketch symbolic model checking in [73]. Specifications
are given in a powerful branching-time temporal logic known as CTL (computa-
tion tree logic). CTL contains both path formulas, which express properties of
computations, and state formulas, defined relative to individual states. A formula
is valid in a model if it is satisfied by all starting states of the transition system.

The basic idea behind CTL model checking is to "unwind" the state-transition
graph of a system into an infinite tree. Each node of this tree then represents a
unique state at a unique time. Properties that involve time can then be phrased as
graph problems over this tree, and computed with graph algorithms such as reach-
ability analysis. In the symbolic formulation, the checking algorithm is recursive
in the formula structure, and is a series of fixed point calculations on relations
expressed as BDDs.

By encoding the labels on states using Boolean variables, transition relation can
be represented by BDDs. The model checking problem for CTL over labeled tran-
sition graphs can be solved by an algorithm that is basically a series of fixed-point
calculations on relations expressed by BDDs, recursive in the formula structure.
Incorporating fairness constraints, which allow specification of some additional
properties, require only a slight modification of the basic procedure.

Because CTL is a powerful logic, CTL model checking and its extensions can
be used to verify properties such as the absence of deadlock that cannot even be



1.5. RELATED WORK 13

described in the limited specification notation developed in this thesis.
CTL model checking has been used to verify a simple pipelined data path.

However, it has not concentrated on developing a general methodology for veri-
fying pipelined systems. In the data-path verification, the ostensible specification
is a register-transfer language, but it was significantly transformed during the
verification. Temporal operators appeared directly in the specification, yielding
path formulas, by taking a register-transfer specification and producing a "tem-
poral interpretation for RTL specifications." This transformation is textual, and
was not checked. After the transformation, some equivalences, which are also ex-
pressed as CTL formulas, were checked to ensure that a set of substitutions was
safe. Performing the substitutions yielded a set of equivalent state formulas. The
model-checking procedure was actually performed on these state formulas.

It is conceivable that by iormalizing the RTL, such work could be cast in the
framework developed in this thesis, and the transformations could then be viewed
as implementation mappings.

Trace theory

Dill [93] developed a form of trace theory as a basis for verification of speed-
independent asynchronous circuits. Burch [61] did some subsequent work, gener-
alizing the mathematics. In trace theory, behaviors are considered to be traces, or
sequences of events, where an event is a signal transition on . wire. Systems are
modeled by sets of traces. Dill's model of computation is a trace stiucture, which
includes both successful and unsuccessful or failure traces. The two sets are not
disjoint because it is possible to hide symbols and thereby destroy the distinction
as to within which set a trace belongs. Less abstractly, the failure traces are nec-
essary to reject cases where the environment in which a circuit is used provides
inputs too quickly for the circuit to respond.

Since the work in this thesis is intended for synchronous systems, and models
valuations rather than transitions, the need to make such a distinction does not
arise.

Dill's notion of "conformation" is analogous to our notion of implementation.4

Dill requires that trace structures be receptive-that a circuit cannot constrain
the inputs that it receives from its environment. Again, we have nothing precisely
the same because it is not applicable to our synchronous model, but one of our
rcquirements-that mappings from specifications to realizations be surjective on
inputs-is similar.

4 Dill chose "conforms to" to avoid the lattice-theoretic technical term "meets" or the logic-
theoretical term "satisfies." The notion of conformity developed here is unrelated; I chose the
word for its geometric sense in imagining the overlap of timing diagrams.



14 CHAPTER 1. INTRODUCTION

State machine comparison

Not all researchers work with logic. To some, "formal verification" denotes the
comparison of finite-state machines. There are standard algorithms for comparing
finite-state machines (134]. Equivalence of two machines can be checked by forming
a product machine. In essence, the inputs of the two machines are connected
in parallel, and the equivalence-checking procedure searches the state space for
reachable states in which the outputs disagree. The search may be conducted
breadth-first or depth-first.

For example, Supowit and Friedman [232] describe a method for verifying the
functional equivalence of two different sequential circuits. The circuits need not
have the same number of inputs or the same latency. The criterion for correctness
is essentially input-output behavior, with each circuit starting in a known state.

The method operates by constructing a series of generalized automata. The
first automaton is the original circuit. In the second automaton, one transition
represents a single application of the circuit's real inputs. The third automaton
represents an application of the circuit's conceptual inputs. For example, a bit-
serial adder circuit might have two real inputs, but when operating on 8-bit words,
it would have 16 conceptual inputs. Once this final automaton has been generated
for each of the two circuits, the automata are compared using a variant of a stan-
dard algorithm. As originally described, this technique handles circuits with only
a single-bit output. However, Corella generalized it [81].

Recent work on state-machine comparison has focussed on symbolic representa-
tions. Those based on BDDs are most successful. Coudert [84] presents a symbolic
formulation of the product-machine construction, which represents sets of states
using the images (codomains) of functions which are represented as BDDs. Touati
and colleagues [234] presents heuristics that improve performance.

Hwang and Newton [139] verify state machines composed of gates and latches
against specifications described as transition tables by finding a circuit state that
covers the starting state of the specification. The notion of a cover is defined
analogously to the combinational notion used in logic minimization.

Theorem proving

In contrast to those who have abandoned logic to work solely with models, others
work wit'lin logic. To some, "formal" denotes "mechanized." While such work has
strong mathenmatica! rigor, there is a danger that complicated logical statements
whose validity is mechanically established by such mechanized proof will bear little
relation to circuit behavioL. For example, it is possible to "prove" that a "gate"
which connects its inputs togethei and its output to ground (see Figure 5.2, p. 116)



1.5. RELATED WORK

implements an exclusive-OR function.5 With extremely complicated constraints
and implications, this becomes a difficult and subtle problem [240].

The two most common contemporary hardware verification approaches based
on theorem proving are to work within either first-order logic using the Boyer-
Moore proof system, or to work in higher-order logic using either Gordon's HOL
system or another approach.

The original use of theorem proving to verify hardware was Wagner's thesis
[238]. Hanes [128] described a system typical of early verifiers based on theorem
provers. Functional specifications were written in a programming language. These
descriptions were translated into a notation used by a logic design system, in
which the circuit design was also specified. A theorem prover based on term
rewriting then applied equivalence transformations to show the two representations
equivalent.

Barrow [11, 101 was among the early researchers to consider formal verification
of VLSI circuits. He acknowledges an "intellectual del t" to Michael Gordon. Many
ideas found in Barrow's system "VERIFY" appear in others' later work. The
problem he addresses is correspondence between state machines, which may be
related by either identity (but expressed by equations in different form), structural
homomorphism (i.e., there is a mapping from variables of one machine to those
of the other), or behavioral homomorphism (mapping from state sequences of one
to state sequences of the other). Barrow's goal was to produce a useful system
dealing with real designs.

Srinivas and Agrawal [226] described a prolog-based system similar to VERITV
Goguen [114] has used a functional programming language called OBJ as a

theorem prover. His approach to hardware verification is similar to that used
in HOL, but he must use extra equations in place of existential quantification.
Other uses of functional languages that have associated proof systems include the
verification of Cayuga by Bickford and Srivas [227].

HOL One of the better-known proof systems in use for formal reasoning about
hardware is HOL (sometimes pronounced "hole"), a mechanization of typed higher-
order logic. Typed higher order logic is sometimes known as simple type theory [51
and is a strongly-typed lambda calculus. This logic is mathematically foundational,
in the sense that a large portion of mathematics can be formalized within type
theory. Foundational theories are good frameworks for developing systems because
they have been designed for flexibility.

Hanna and Daeche [129] were apparently the first to note the utility of mech-
anized higher-order logic for reasoning about hardware. They have demonstrated

'if the correctness condition is phrased as "when the inputs differ the output is high," then the
antecedent of the implication can never be satisfied by the circuit, hence the entire implication
is valid.



16 CHAPTER 1. INTRODUCTION

detailed reasoning about the implementation of an edge-triggered flip-flop using
gates. More recently they have proposed a system based on a different formulation
of type theory [130J. Mike Gordon has been an enthusiastic proponent of this ap-
proach. He and his colleagues have generally concentrated on reasoning at much
higher levels of abstraction than the gate level.

The HOL system was developed by Gordon [118. 115, 1161 based on an earlier
system called LCF-LSM. HOL has seen significant use in the research community
[144. 65. 64, 92, 146, 161. 148, 147, 162, 176, 71, 120. 149, 245, etc.].

The HOL proof system is guaranteed to be sound by the type system of its
implementation: a theorem is a type in a strongly-typed language. The only way
to construct an object of type "theorem" is to invoke a procedure that corresponds
to one of the inference rules of the logic.

As its name implies, HOL allows the manipulation of "higher-order" objects-
e.g., functions which operate on other functions. This allows time-varying signals
to be modeled as functions from the integers (which represent points in time) to
signal values. Hardware elements can then be described by predicates over signals
(i.e., predicates over functions from integers to values). For example, an inverter
with unit delay would be defined by the equation

Inv(izo) = Vt.o(t + 1)= -40

where i and o are functions from integers to truth values, and -, denotes logical
negation.

Internal structure can be hidden by existential quantification. A buffer con-
structed of two inverters in series could be defined by

Buf(i,o) = 3x. Inv(i, x) A Inv(x,o)

which effectively hides the point x of series connection.
Behavior can be described in a similar way using logical predicates. Proving

correctness consists of showing that one conjunction of logical predicates (which de-
scribe circuit structure) implies another conjunction of predicates (which describe
desired system behavior), e.g., Imp(a, b) D Spec(a, b).

Several abstraction techniques can be expressed within this logic [175, 176].
Quantification to hide structure can be considered an abstraction. Data abstrac-
tions are dealt with by abstraction functions.

Temporal abstractions are dealt with by mapping abstract time points to points
of detailed time, by defining a monotonic function f on the integers. This function
can be composed with functions denoting signals to perform temporal abstraction.
For example, using this mechanism, the proof condition above becomes Imp(a, b) D
Spec(a of, bof). Such temporal abstraction functions may be constructed by using
the signals of the implementation. For example, a temporal abstraction function



1.5. RELATED WORK 17

might be defined so as to "pick out" the output of a system only when an "output
valid" signal is asserted.

This approach is usable for systems where the timing rel .,onship between the
realization and its specification is one of granularity-for example, to show that
a microcoded machine implements a computer whose timing is given in terms
of atomic instructions. However, it is far from obvious how this might apply
to pipelined systems. Considering the limitations of this approach to temporal
abstraction led to the inspiration for the marked strings in this thesis.

Since the HOL system is a very general approach based on logic, without re-
course to system models themselves, there is no clear methodology which could
establish the validity conditions necessary for a proof to be a meaningful state-
ment about hardware. This lack of a methodology is a drawback of the approach.
For example, a simple microprocessor that was "verified" using HOL lacked a reset
signal.6

The most common use of HOL sometimes seems to have been verifying versions
of Tamarack, but there is actually a wider variety of work. For example, Dhingra
[92] used'HOL to provide a formal basis for a set of "rules of thumb" for dynamic
CMOS circuit design, and exhibited a digital PLL (phase-locked loop) as a case
study. He identified the formal relation of the switch level to higher levels of
hardware description as an area for future work.

Boyer-Moore (Nqthm) The other popular contemporary research into verifi-
cation using theorem provers is based on the Boyer-Moore prover, a mechanization
of quantifier-free first-order logic. This logic is simpler than higher-order logic, and
consequently its mechanization is more of a theorem prover than HOL, which is
more of a proof assistant. One comparison of HOL and Boyer-Moore found the
entire process of using Boyer-Moore was much faster than that of using HOL [6].
On the other hand, another concluded that the HOL approach was more attractive
[229, 228].

Since the Boyer-Moore logic is a first-order logic, and sequences are modeled
within HOL as higher-order entities, it is not possible to model sequential be-
havior within Boyer-Moore using the style of HOL. Instead, sequential behavior
is described by writing recursive functions. Most of the parameters of each such
function represent system state, and recursive invocations represent the updating
of the state variable. Each function also has a parameter which represents time
(e.g., as a list of all the points in time for the future), and the recursive invocation
progress through time (e.g., by deleting the first element of this list). A proof of
correctness consists of showing the equivalence of two functions, one of which has
less state (i.e., the specification) than the other.

It is not easy to see how this approach could be used to deal with pipelining.

6 It was fortuitous that the chip actually powered up in a meaningful state, and would work.



18 CHAPTER 1. INTRODUCTION

Possibly a pipelined realization could be expressed as a set of mutually recursive
functions, where the mutual recursions represented the interaction of pipe stages.
The unpipelined specification would then be a single recursive function. The proof
of their equivalence would then require disentangling the mutual recursion, which
might be quite difficult.

The Boyer-Moore prover has been used in several efforts at hardware verifica-
tion, particularly by those most familiar with it [137, 17, 16, 25, 24].

Other theorem provers Other implementations of higher-order logic that have
been used include Veritas+ [130] and Nuprl [13], which are based on intuistionistic
type theory.

Another approach to hardware ver;fication based on theorem proving is the use
of a prover such as Clio [227], SBL [213], or OBJ3 [114], which were developed
for reasoning about programs written in (lazy) functional languages, which can
express (infinite) sequences directly.

Symbolic simulation

Symbolic simulation is an old technique, which became much more practical with
the advent of BDDs. Darringer [88] presented symbolic execution as a program
verification technique adaptable as a hardware verification technique. This style
of symbolic execution consists mainly of tracing the possible execution paths, and
Darringer applies it to microcode verification. He makes use of a simulation relation
between two machines, and proves that machines started in corresponding states
will always proceed in correspondence. He also shows how to apply symbolic
execution to combinational logic verification, by building a gate-level simulator
then simplifying the equations it implements.

Cory [82, 83] discusses the comparison of designs, expressed in a HDL, using
"conventional" symbolic simulation. The practicality of such symbolic simulation
was very limited at the time.

Bryant's introduction of reduced, ordered BDDs for symbolic switch-level sim-
ulation [40, 41] for circuit verification [42, 52, 47] renewed interest in symbolic
execution; Bryant and colleagues have verified some simple circuits [45, 46, 15].
Reeves [205] also constructed a symbolic verifier based on these techniques. Huet
al. [135] describe a system for translating a higher-level specification notation
into low-level BDDs, but they do not give a formal justification for ',he translation.
This thesis was motivated by the lack of a methodology for establ:Shing correctness
conditions for such symbolic simulations.

Bull's industrial tool Priam [18] performs symbolic simulation of two descrip-
tions written in a hardware description language called LDS. One description,
provided by the user, serves as a specification, while the other, extracted from
a circuit, serves as a realization. The latches and timing of the two descriptions



1.5. RELATED WORK 19

must agree, and Priam checks the two descriptions for equivalence, by symbolic
simulation using a form of BDDs. The chief difficulty in doing this is that the LDS
language allows the possibility of conditional assignment statements. Priam solves
this by maintaining both the value for each variable, and a validity condition that
indicates the cases in which the value is actually valid. This technique is used not
only to check that values are equivalent, but also that each signal is assigned a
value exactly once, regardless of execution path. (This corresponds to the absence
of conflicting drivers or floating nodes in the design.) Priam has been used within
Bull to verify actual designs, and a VHDL-based version has been marketed.

Jain and Gopalakrishnan [142, 141] examined the use of parametric Boolean
formulas in symbolic simulation. In their view of symbolic simulation, which they
implement with Cosmos, circuit state is established, inputs are applied, and then
outputs and state are checked. This will work for circuits which have no input
constraints or state invariants, but potentially fails in their presence. To handle
such constraints, they propose replacing the Boolean variables representing inputs
and initial state with Boolean expressions which form parametric representations
of the input values allowed by the constraints. Their present method of deriving
such parametric representations is lengthy, and they are seeking better approaches.
The methodology developed in this thesis can be viewed in part as a systematic
way of deriving such parametric forms. We get parametric forms as a result of
applying mappings to components of the specification.

1.5.3 Microprocessor verification

Several researchers have verified microprocessors. All have been designed with
verification in mind. Here we give a brief overview of this work; a more detailed
survey appears in Chapter 9.

FM8501 Warren Hunt verified FM8501, a microprocessor designed for that pur-
pose, in his thesis. Crocker and his colleagues subsequently re-verified it. Hunt
and colleagues have also verified a simple design called Kit, and layered a "short
stack" of correctness proofs for compilers and programs above it [161.

Cayuga Bickford and Srivas verified mini-Cayuga, a simplified version of a pipelined
processor. Sekar and Srivas verified a simplified version of Wirth's Lilith.

Tamarack Mike Gordon illustrated his early ideas on hardware verification using

a simple computer which has been verified, usually using higher-order logic, several

times, by Jeff Joyce and others [117, 11, 10, 144, 146, 150, 81, 158]. Elaborated
versions of this design are known as Tamarack. Windley later improved upon the
structure of the proofs [245, 244].



20 CHAPTER]. INTRODUCTION

Viper The Viper microprocessor has received publicity as the "first verified mi-
croprocessor." It was not entirely verified because of funding constraints, and be-
cause the project had exhausted most of its research content. Nonetheless, Viper is
claimed by its proponents and advertisers to be the "first verified microprocessor."

MT1

A processor called MTI has been verified as part of an evaluation of verification
techniques [23]. The processor is not pipelined.

SECD

Graham [120] has verified an implementation of Landin's SECD architecture., which
is desi-ned to execute a functional programming language.

1.6 Contributions of this thesis

This thesis sets out a simple, intuitive notion of what it means to say that a cir-
cuit correctly implements a specification. It describes a new specification notation
sufficiently powerful for expressing instruction sets, and sufficiently restrictive to
allow efficient checking. It also presents a new methodology for verifying processor
implements against such specifications. It also presents the formalization of the
methodology, along with a new algebraic structure, marked strings, needed in
the formalization. It also empirically validates its claims: a prototype tool im-
plementing the methodology, the verifier, is applied to a real, pre-existing, 16-bit,
microcoded, CISC microprocessor, modeled at the switch level, in order to verify
initialization, an interrupt response, and execution of several instructions.



Chapter 2

Verifying some simple sequential
circuits

The verification methodology presented in this thesis is complicated of necessity.
Many layers of abstraction separate the semantics of an instruction set from the
rectangles of a chip design. In order to explain the methodology, this chapter
contains some examples. They are simple familiar circuits whose correctness is not
in question. Hence, they can be used in a discussion that concentrates primarily
on the methodology itself, rather than the circuit examples. Nonetheless, using
examples keeps the discussion concrete.

This chapter should leave the reader with a good grasp of the strategy of the
methodology. The mathematical details will be vague or nonexistent, and there
will be no proofs, so the correctness of the approach may be in question. For the
reader who insists on knowing some particular detail, there are cross-references to
the more detailed chapters which follow. Thus, this chapter can also serve as an
extended outline of much of the thesis.

This chapter presents two simple sequential circuits as motivating examples.
The circuits were chosen for simplicity of illustration. The first is a simple latch,
implemented several ways. The second is a stack circuit that can be found in
several textbooks [174, pp. 72-75], [243, pp. 364-366], [191, pp. 245-249]. This
stack has been formally verified [15].

The first section illustrates a latch. Despite the circuit's simplicity, it illustrates
many concepts, including

"* timing is determined by the operation being performed by the circuit, and
consequently, clocks are just inputs,

"* the notion of input coLformability,

"* the notion of marking the nominal beginning and ending of an operation,
state storage defined relative to these marks, inputs defined relative to the

21



22 CHAPTER 2. VERIFYING SOME SIMPLE SEQUENTIAL CIRCUITS

beginning mark, and outputs defined relative to the ending mark,

"* circuit nodes which serve for both state storage and output,

"* abstract specification of circuit behavior, and the structuring of a specifica-
tion by assertions, and

"* a variety of implementations of one specification.

The second section uses a more complex circuit, a stack. Most of the preceding
concepts are also illustrated by this example, which also shows

"* a more detailed example of input conformability,

"* a more complete example of the methodology in action, and

"* an example of system decomposition.

2.1 Latch

The simplest sequential circuit is arguably the latch. Despite this simplicity, there
are many ways to implement latches. This section begins by describing an ex-
tremely simple nMOS latch', shown in Figure 2.1. Though somewhat contrived,
it serves well as an illustration.

L

D O

Figure 2.1: A simple latch

The latch has two inputs. A control input L is pulsed to load the latch. A
daia input D provides the data to be loaded. When the latch is holding data, the
latched value is retained by the capacitance on node S. The latch has a single
output, Q.

By taking an abstract view, we can say that a latch performs two operations:
load and hold. Stylized timing diagrams for these operations on our circuit are
shown in Figure 2.2. We will shortly explain the parts of the diagram in detail.

'suggested by Manpreet Khaira of Intel Corporation



2.1. LATCH 23

Load Hold
Start Start

Next Next

LJ_

D

S

Q

Figure 2.2: Timing diagrams for simple latch. For each signal, a double horizontal
line indicates that either a high or a low value might be present; the absence of
any line indicates that we don't know or don't care about the value.

Our approach to verification is through simulation. To verify a circuit, we
will simulate it exhaustively, and check that it performs correctly in all possible
conditions. We choose to simulate the circuit at the switch level, though this
choice is pragmatic rather than fundamental. Assuming then that we know what
it means to simulate a circuit, we must consider several issues.

"* What do we mean by exhaustively? (And how can we hope to cover all these
cases?)

"* How do we establish these conditions in our simulation model?

"* How do we check that the circuit's results are correct?

While considering these, we must keep in mind that our goal is formal verifica-
tion. That is, our goal is to establish correctness results with the reliability of
mathematics.

To answer these questions, we must examine the nature of circuits and of our
simulation model of them. This will provide us with some of their properties,
which yield requirements on our methodology of verification. We will begin this

by considering the latch and its timing diagram more closely, looking at different
parts of it in turn.

Our first observation is that the basic timing of these operations is defined by
the control signal. Figure 2.3 repeats a portion of the original timing diagram.

From this diagram we can observe three things: timing is defined by the oper-
ation, clock signals are ordinary inputs, and in order to define timing in this way,



24 CHAPTER 2. VERIFYING SOME SIMPLE SEQUENTIAL CIRCUITS

Load Hold
Start Start

Next Next

Lf

Figure 2.3: Timing of the control signal of the latch. Note that the two operations
take different lengths of time.

the beginning and the ending of each operation must somehow be marked.
Each operation that the circuit is to perform has its own timing. In our exam-

ple, the circuit can perform two operations. A load operation commences with the
control signal low. The signal undergoes a transition to the high logic level, where
it stays for some length of time before returning to the low level. In contrast, for
the hold operation, the control signal simply stays low, and the circuit dictates no
reason why this operation must have the same duration as the load operation2.
The figure shows this operation as taking less time than the other one.

Since operations dictate their own timing, there is no need to distinguish clock
signals from other inputs. In a synchronous circuit provided with a regular clock,
circuit operations will have a fixed timing relationship with the clock signals. How-
ever, rather than saying that operations are defined by driving control signals to
particular values on certain clock phases, we can just as well express the relation-
ship of the clock signals to circuit operation. Doing so provides a strong advantage:
clock signals are no longer treated differently from other input signals. This affords
considerable simplification. Regardless of the clocking discipline we have a uniform
way of describing clocking. Whether the clock is single-phase or 4-phase, we can
treat all circuits alike.

Having gotten rid of clocks as the way of distinguishing different points in time,
however, we must provide a substitute. We can do this most simply by identifying
the nominal start and nominal end of each operation. In the figures here, we have
indicated these with gray lines, labeled "start" and "next." To perform a sequence
of operations, conceptually we align the start marker of each operation with the
next marker of its predecessor.

In performing this alignment, we must ensure that when we align markers, we

2However, when the circuit is used in an actual system, the context in which the circuit
appears might dictate that both operations take the same time. For example, the control signal
might be a gated clock. Here the load operation would correspond to the presence of a pulse, and
the hold to its absence, during the active phase of a regularly occurring clock. Still, the circuit
itself is not required to be used in this manner.



2.1. LATCH 25

also align signals. That is, if one operation requires that a signal be high at a
particular time, we cannot allow another operation to require it to be low at the
very same time. For the latch it is rather obvious that this condition is satisfied. A
subsequent circuit example will begin to expose the subtleties of the requirement.
This idea, that conflict must be avoided, will be formalized in our notion of input
conformity.

The markersý, two per operation, provide a convenient way to define the timing
of each operatioa. The signals that comprise the operation can be identified relative
to the start marker. The next marker can be placed relative to the start marker
by noting the nominal duration of the operation.

Moreover, these markers provide a convenient way to define the timing of state
storage. Consider the classical view of finite-state system operation. The system
begins in one state, and is presented with some input. Then time advances in an
atomic step, after which the system is in another (or possibly the same) state. We
wish to reconcile this view, a simple abstract model of state transition, with the
reality of state representation in circuits.

In a circuit such as our latch we can consider the state of the circuit at a
particular time, such as at the nominal beginning of an operation. In general the
state of a system will not be so well-defined at any particular time. Instead, some
parts of the system may be stable during some clock phases, while other parts will
not be stable until different phases occur. Since we have replaced the traditional
standard of reference, the clocks, with a pair of markers, we will define the timing
of state relative to a marker. The question is then, "Which marker?," and the
answer is both. The precondition state, that is the state before an operation takes
place, is relative to the start marker. The postcondition or "after" state is relative
to the next maker. The timing of the precondition state for our latch is illustrated
in Figure 2.4a (p. 31).

In this figure, we have drawn two lines for the data signal, one at the high
logic level and the other at the low. This is because, though we intend for some
particular value to be applied to the circuit during the indicated time, we do not
know what this particular value will be. This is in contrast to the control signal,
where we know the particular value to be applied.

Since in classical models inputs are treated similarly to predecessor state, to
treat them in a uniform way we must establish their timing relative to the start
marker. Figure 2.4c illustrates this.

The timing of output data is normally determined relative to the next marker3 ,
as in Figure 2.4d. However, many circuits make no disjoint distinction between
output and stored state. In such cases, the timing used will depend on the role
being considered. When the node is being considered as an output or successor

3 Our notion of machines is the Moore model, which makes explicit the delay between cause
and effect inherent in any realizable physical system.



26 CHAPTER 2. VERIFYING SOME SIMPLE SEQUENTIAL CIRCUITS

state, its timing will be taken relative to the next marker, and when it is being
considered as predecessor state, it will be taken relative to the start marker.

The preceding elements were combined in the timing diagram of Figure 2.2
(p. 23). Using this diagram, we can analyze sequences of latch operations. For
example, Figure 2.5 (p. 31) shows a load operation followed by a hold operation.
Notice how the diagrams of the two separate operations are combined to yield the
complete diagram. The end of the first operation coincides with the beginning of
the second. Where signals on circuit nodes overlap in the diagram, their values
match. Any longer sequence of latch operations can also be expressed by a timing
diagram constructed of the two component operations from Figure 2.2.

Having looked in some detail at the way in which the circuit's timing operates,
we need also to consider the latch from a more abstract point of view.

The fundamental motivation for formal verification is to increase confidence
in the correctness of real systems. One way in which it can assist in achieving
confidence is that it provides a check between two independent representations of
conceptions of a system. A positive verification result does not guarantee that a
system is actually what we intend it to be, since it is possible to make the same
mistake twice, and check an incorrect circuit -aainst an incorrect specification.
However, the likelihood of this occurrence is smaller4 than the likelihood of a
single error.

But verification can increase confidence in another way as well. If one repre-
sentation is somehow simpler than the other, we can reason, whether formally or
informally, more easily about it. In the course of such reasoning we may reach some
opinion of the suitability of the system. This is the more crucial aspect of verifica-
tion: that it provide us with some leverage with which to move the mountains of
detail that the latch example has shown are necessary to describe accurately the
operation of even very simple circuits. Therefore, we wish to specify the behavior
of circuits in an abstract way. The specification model should be detailed enough to
represent what we find essential or interesting about circuits, but abstract enough
to avoid what we find distracting.

2.1.1 Specification

The specification model we have in mind is an abstract Moore machine, structured
as a set of symbolic assertions. (Recall that in a Moore machine, the outputs are
determined by current state, but not by inputs.) Essentially, each assertion corre-
sponds to an operation that the system is to perform. Each assertion is symbolic
so that the text of a single assertion can concisely represent the operation for all

4 We do not intend any study of sources of such error, but this reduced probability will hold
provided there is any statistical independence between the mechanisms that introduce error
in the two representations. The reduction in probability of course may be insignificant if the
independence is small.



2.1. LATCH 27

possible data values. Describing the specification machine in this way decouples
the different operations of a circuit into different places in the specification.

Let us specify the abstract behavior of the latch we have been considering.
Informally, the latch has an input and it has an output and it stores a bit. It
implements two operations, load and hold. A load operation takes an input value
and stores it. A hold operation maintains the stored value. After either operation,
the stored value also appears on the output.

Noticing that the stored value appears on the output after every possible op-
eration, we are faced with our first decision. Should the specification identify the
stored value with the output? The case can be made either way. Distinguishing
the stored value and the output is more in keeping with our circuit. However.
identifying the stored value with the output simplifies the specification. Making
this identification, if we let D denote the input and Q the stored/output value, we
can specify the latch with the two assertions:

((operation = load) A (D = b)) : (Q = b) (2.1)

((operation = hold) A (Q = c)) (Q = c) (2.2)

Each of these assertions corresponds to one operation of the latch. In each,
the left-hand side of the 4 relation denotes the conditions on the system in an
(abstract) state, and the right-hand side denotes the conditions in its successor
state. If the system is in a configuration satisfying the logical formula on the
left-hand side, then after its transition it will be in a configuration satisfying the

formula on the right. Thus, the symbol 4 denotes both logical implication and
the (abstract) passage of time. The symbols b and c are variables that denotes
arbitrary bits. The symbols Q and D and the name "operation" are variables
corresponding to the state and inputs of the system being described.

Part of the development our methodology will be to show that specifications
expressed in such a language define an abstract machine, and that the checks
we make between specifications and circuits entail a formal relationship between
machines.

2.1.2 Mapping

For now, though, we need to relate the latch specification of equations 2.1 and 2.2
to the latch timing diagram of Figure 2.2.

Fortunately, this becomes straightforward if we refer to the elements included in
the diagram, distinguished in Figures 2.3 and 2.4. When we compare them with the
inner-most parenthesized subformulas of equations 2.1 and 2.2, a simple correspon-
dence can be found. The subformulas (operation = load) and (operation = hold)



28 CHAPTER 2. VERIFYING SOME SIMPLE SEQUENTIAL CIRCUITS

correspond to the elements shown in Figure 2.3. The subformula (D = b) corre-
sponds to the element shown at the bottom of Figure 2.4c, where the two horizontal
lines show that the bit b might take on either 0 or 1.

The subformula (Q = b) or (Q = c) corresponds to the elements shown in
Figures 2.4a, 2.4b and 2.4d, that is, it corresponds to both nodes S and Q having
the indicated value over the indicated time. The indicated time is the only tricky

part. When the subformula appears on the left of the assertion's 4 symbol, the
timing is taken relative to the first marker, that is, as shown in Figure 2.4a. When
the subformula it appears on the right-hand side of the •, the timing is taken
relative to the second marker, as in Figures 2.4b and 2.4d.

From this example we can see what we need to be able to describe in a mapping
language: we must map subformulas like the innermost parenthesized ones of the
assertions above, which give particular values to particular abstract state variables,
into a representation of clues on particular nodes of the circuit, with time relative
to some sort of marker. For those subformulas that correspond to inputs, we
must also represent another marker, indicating the duration of the corresponding
operation.

Given such a set of assertions and mappings, we can verify a circuit by using
the mappings to construct symbolic simulation patterns for each assertion, then
simulating the circuit to see that it passes the tests defined by the patterns.

2.1.3 Different implementations

There are many other ways to implement a latch, and we would like for all of them
to satisfy our latch specification.

If our specifications are sufficiently abstract, they will include no particular
details of a specific circuit implementation. This will leave us free to verify more
than one circuit against a particular high-level specification. On the other hand,
as we saw in relating the abstract specification to the timing diagram, part of
our specification does have to consider circuit details precisely. We will need to
keep these details separate from the high-level specification of behavior, if we are
to consider verifying different circuits from one specification. But this is exactly
what the mappings do: provide a bridge between the circuit and the high-level
specification, which are isolated from one another.

For example, the preceding latch maintained its stored value through charge
storage in a capacitor. Ideal capacitors can store arbitrary amounts of charge for
any length of time. Actual devices lack both such ideal properties, but the lack
of the latter is important here. Since real capacitors have nonzero conductance,
charge bleeds off and eventually this latch "forgets" its stored values. A latch

5 Although the particular switch-level simulator we have used in this research happens to
neglect this phenomenon.



2.1. LATCH 29

that uses weak feedback to maintain stored state fixes this particular flaw6 , but
since the circuit is supposed to be in essence the same, it ought also to meet our
specification. For example, Weste and P'shraghian [243] call the CMOS circuit of
Figure 2.6 a "D flip-flop."

The timing of this circuit is similar to that of the original latch, so its timing
diagram will look similar, but it is not the same. The node S of the original latch
has no counterpart here. Or, if you like, the nodes S and Q of the original latch
have the same counterpart, node Q of this latch. Thus to verify such a latch we
would have to modify the mapping from the abstract specification so that it maps
onto this circuit. In this case, the modified mapping would be simpler than the
original. Figure 2.7 illustrates the timing of the two operations in this latch.

This barely begins to catalog the possible latch implementations, as a glance
through any book on digital integrated circuit design would show.

2.1.4 Specification language

Let us return to the latch specification of assertions 2.1 and 2.2 from page 27 to
see what they imply for the design of a formal language to support such a style of
specification. (These implications will be explored more fully in Chapter 3.)

Although these simple assertions do not use all of the features of a fully devel-
oped specification language, or even all of its essential features, we can still make
several cogent observations from them. First, each assertion consists of two parts,

or formulas, separated by the •' sign.' We call the first formula the assertion's an-
tecedent, or precondition. We call the second one its consequent, or postcondition.
Implicit in this division is the notion that the antecedent is to hold at one time,
while the consequent is to hold at some successor time. We can also observe that
in these assertions, the antecedent is composed of the conjunction of two parts, or
conjuncts, each of which is a smaller subformula.

Examining one of these simple subformulas reveals a subtlety of this style of
specification. Consider the consequent of the first-assertion, Q = b. It is deceptively
simple. Yet the letter Q denotes state of the system, whereas the letter b does not.
Instead, b is a Boolean variable that appears only in the assertion so that we can
describe the case where b denotes the bit 0, and the case where it denotes the bit
1, in a single expression. Each of the other primitive subformulas has the same
form: on the left of the = sign is a state variable denoting system state, where on
the right is an expression over a set of case variables denoting state values being
considered.

These two kinds of variables, state variables and case variables, play different
roles in the specification. The state variables define the inputs, outputs, and state

'though now the circuit designer must be careful that the "weak" inverter is actually weak

'The symbol =. can be read "then implies" or "next implies."



30 CHAPTER 2. VERIFYING SOME SIMPLE SEQUENTIAL CIRCUITS

of the system being specified. They are global in scope; each can appear in any
assertion. However, the context in which state variables can be used is restricted:
each primitive subformula contains exactly one state variable. The case variables,
in contrast, define the cases in which an assertion applies. Case variable3 are used
to build up expressions of the values of state variables'. Case variables are local
to assertions in scope; if the same letter is used as a case variable in two ý:.Ierent
assertions, the two occurrences are completely independent.

We conclude this section with a preview of what is to come: a specification of
the latch, in Figure 2.8. The notation used will be described in Chapter 3. Here
we have made explicit the distinction between state variables and case variables.

2.1.5 Summary

This latch example has illustrated several characteristics of this view of syn-
chronous hardware. A sequential circuit performs different operations. Each of
these operations has its own timing: a nominal duration, demarcated by a nom-
inal beginning and a nominal ending. The signals needed to make the circuit
perform the operation, however, need not be restricted to this interval, and indeed
we will soon see that they often cannot be so confined. The important thing is to
ensure that they are consistently defined. In particular, the circuit's clock signals
are simply inputs which often must follow a particular pattern both before and
after the nominal bounds of the operation. These markers defining an operation's
timing are also useful references by which the state of the system is measured.

To verify a circuit, we need a specification of its intended behavior (Chap-
ter 3). If the specification is more abstract than the circuit, some formal relation
between the specification and the circuit must be given (Chapter 5). This can take
the form of a nondeterministic, or set-valued, mapping from the specification to
the circuit. This relation then relates transitions of the abstract specification to
circuit operation by relating abstract instants to the markers distinguishing the
circuit's operations, and relating abstract state at these instants to circuit state
timed relative to the markers. Parameterized symbolic representations of sets of
specification transitions are related to parameterized symbolic representations of
intended circuit operation, and circuits can be checked against these by symbolic
simulation (Chapter 6).

8and are also used in another combining form called case restriction, not present in this
example



2.1. LATCH 31

Start Start Start Start

LJf-L_ Lj L,_J_- LJ

S S D a

a. State (before) b. State (after) c. Input d. Output

Figure 2.4: Timing for load operation of latch. Each aspect of the operation is
shown separately.

LJ7

D

S

Q

Figure 2.5: Two successive latch operations. Compare to Figure 2.2.

D _

•1Q

Figure 2.6: Equivalent latch. This circuit performs the same function as that of
Figure 2.1, but its timing details differ.



32 CHAPTER 2. VERIFYING SOME SIMPLE SEQUENTIAL CIRCUITS

Load Hold
Start Start

Next Next

D

Q

Figure 2.7: Timing diagram of equivalent latch. Compare to Figure 2.2 to see the
difference in the timing details.

SMALversion 0 specification latch
types

value word 1;
operation enumeration load, hold.

state
op : operation;
D value; Q : value.

assertions
op = load /\ D = b:value > Q =

op = hold /\ Q = c:value ==> Q = c.

Figure 2.8: Abstract specification of a latch. The notation will be fully described
in Chapter 3.



2.2. THE STACK FROM MEAD AND CONWAY 33

2.2 The stack from Mead and Conway

The preceding section used a very simple sequential circuit to present some el-
ements of a rather complicated verification methodology. This section gives a
slightly more complex circuit to better motivate some of the complexity.

Mead and Conway's classic text [174] presents an example of the design of a
complete subsystem. The example is a stack, constructed from a bidirectional
dynamic shift register. This circuit has been well-studied [243, 191]. Here we give
the circuit and its operation. We also identify a shortcoming that motivates our
notion of input conformity9 .

The stack is composed of a series of the cells shown in Figure 2.9.

SHR TRL
I.L Phase 1 1.L

"=,Stored

T Phase 2 T

TRR SHL

Figure 2.9: Mead and Conway's stack cell. A stack is constructed by composing
these cells horizontally. The top of the stack is at the left-hand end. Values are
stored in inverted form on the indicated node.

The top pass transistors of the cell may conduct during the first phase of a two-

phase non-overlapping clock. The bottom pass transistors may conduct during the
second phase. Data bits are stored (in inverted form) on the indicated node.

A stack can do three things: push data, pop data, or hold data. By turn-
ing these transistors on at suitable times, the three operations of a stack can be
performed1". Figure 2.10 gives the timing of the stack cell as originally presented.
Push is implemented by asserting SHR during the first clock phase, and then as-
serting TRR during the second phase. This loads the data input from the left-hand
side of the cell. Hold is implemented by asserting TRL during the first phase, and

9 Mead and Conway [174] as well as Weste and Eshragbian [2431 glossed over the shortcoming.
Mukherjee [191] noted it, but neglected to point out that a push followed by a pop serves as a
delay.

"0 Mukherjee uses the names PUSHI, POPI, PUSH2, and POP2 respectively for SHR, TRL,
TRR, and SHL.



34 CHAPTER 2. VERIFYING SOME SIMPLE SEQUENTIAL CIRCUITS

then asserting TRR during the second. But pop is implemented by asserting SHL
during the second phase, and then asserting TRL during the first. This outputs
the data to the left side of the cell.

Outputs and stored values are actually inverted in this stack, but we will use
the uncomplemented values in the timing diagrams that follow, to simplify them.

Push Hold Pop

JL _ _F_.l_Phase 2 r . •... r

TRR .___ _, L . . . . . . .

SHL ... . . .S* T_.............................._"!..&.. .
HRL . . . . . . . . . . .. . . . . . . . . . . . .

SHR

Figure 2.10: Timing diagram for stack cell. Each of the three different stack
operations is shown.

The four control signals can be generated by the control logic of Figure 2.11.
The control circuit generates the four stack control signals from a pair of control
signals multiplexed on a single input line. The circuit simply demultiplexes the
signals and uses them to gate the appropriate clocks. This controller introduces a
delay of one clock phase. Figure 2.12 illustrates the timing needed for the control
circuit in order to produce the timing shown above for the stack cell. A push
operation is performed by holding the op signal high during phase 2, then low
during the following phase 1. A hold is performed by holding the signal low during
both phases. But a pop is performed by holding the signal high during a phase 1,
then low during the following phase 2.

However, it is difficult to understand how to use the stack when its operation
is presented this way. The timing of the pop operation is inconsistent with the
timing of the other two operations. It is not even clear that this stack can actually
be used for any purpose. The only way that a circuit can do anything useful is to
produce an output, and the only stack operation that produces an output is pop.
Yet the pop operation cannot follow either the push or the hold operation.

For example, suppose we want to perform the operation sequence hold; pop.
Attempting to align the pop operation to follow hold is shown in Figure 2.13.
There the clock signals are in conflict during the shaded interval. One operation



2.2. THE STACK FROM MEAD AND CONWAY 35

Phase 2

Phase 1

OP TRR

SHL

"TRL

SHR

Figure 2.11: Mead and Conway's stack control circuit. The control input is time-
demultiplexed and used to gate the clock, producing the cell control outputs.

Push Hold Pop

Phase 1 .-§-_._ _. _rIL
Phase2

SHL __J___ _

SHR J_7 ..

sunr NWx 4tarM NOMt Staft NGxt

Phase 1 I

Phase 2 F j1
OP~~°I- I I

Figure 2.12: Timing diagram for multiplexed stack control, after Mead and Con-
way. The control inputs are shown at the bottom, and the cell timing is shown at
the top.



36 CHAPTER 2. VERIFYING SOME SIMPLE SEQUENTIAL CIRCUITS

Clock
conflict

Figure 2.13: Attempt to align pop to follow hold operation. The inconsistent
specification causes a signal conflict.

requires that clock phase one occur while the other operation requires that clock
phase two occur at the same time. Adjusting the start and finish times of the
operations so that the clocks can be aligned causes problems with the op control
signal. Either there is a conflict of values on this signal, or there is a period when
no value is specified for this signal-and if this second proposed adjustment is
made, then we would find a conflict if we examine a pop followed by a push. The
timing is inconsistent. We wish to allow any possible sequence of stack operations.

Fortunately, we can adjust our idea of a pop operation to have timing consistent
with the other operations. We call such consistency conformity-overlapping
portions of different operations must conform with one another: they must agree.
With this revision, a more appealing view of the stack's control timing is given in
Figure 2.14.

For the timing shown here, all abstract input sequences are conformable. That
is, for any sequence of push, pop, and hold operations, the signals that represent
them can be applied in succession to the circuit. Figure 2.15 illustrates the timing
for all three operations, including 10 and stored state, and Figure 2.16 shows that
the operations can be combined to form a sequence.

Observe that both an abstract notion-a sequence of operations-and a more
concrete notion-the circuit's actual timing-come into play in this discussion.
When we discuss conformity in more detail, we will again see that we must consider
both aspects.



2.2. THE STACK FROM MEAD AND CONWA.Y 37

Push Hold Pop
Phase 1 _.-J7--1L _.-1- JL... L
Phase 2 J1. ~ .

TRR ~

SHLL

SHR _j---_ _

Start Next Start Next Start Next

Phase 1 J -- [-L rVL

Phase 2j ]J-J-L §FLVL 1- rL
OP-_

Figure 2.14: Revised timing diagram for multiplexed stack control. This version
elimin~ates the conflict identified in Figure 2.13.

Start Next 1Start Next Start Next

Phase 1

Phase 2 J j J l

Stored

S.. ~... .......... I..................Input

output

Figure 2.15: Timing diagram for stack operations. The three operations are shown
in the style of Figure 2.2. The grey arrows indicate the marker relative to which
signal timing is measured.



38 CHAPTER 2. VERIFYING SOME SIMPLE SEQUENTIAL CIRCUITS

t[- •r -1 v 1 1I-1-1.

Figure 2.16: Sequence of stack operations: push, push, push, pop, hold. Analogous
to Figure 2.5. The grey arrows indicate the boundaries relative to which state is
analyzed.



2.2. THE STACK FROM MEAD AND CONWAY 39

2.2.1 Verification

We will use this sequence from Figure 2.16: three push operations, a pop, and a
hold, to provide a more complete illustration of the methodology.

operation push push push pop hold
input 0 1 0 - -

output - - - - 0

Figure 2.17: 10 behavior of abstract stack. Data is supplied during each of the
push operations, and an output appears following the pop operation.

push 0 push 1 push 0 pop hold

phill

phi2

op

in out........ ....... ......
.. . .. .° •. .• . . . .

out . ..

Figure 2.18: 10 behavior of stack circuit. The time during which inputs must be
stable, or during which outputs will be stable, is indicated by the heavy lines.

Figure 2.17 shows the input-output behavior of an abstract model of a stack
for this sequence of operations, and one particular pattern of input data. An
input value must be provided for each of the push operations. The pop operation
produces an output. Our Moore-machine model of sequential behavior dictates
that this output will be present at the succeeding time, that of the final hold
operation.

Suppose this abstract model is to be our specification of the circuit. To say that
the circuit meets the specification, we must relate the 10 behavior of the abstract
model in Figure 2.17 to the 10 behavior of the circuit given by the timing diagram
in Figure 2.18. Using this relation, we must show that the when the circuit receives
circuit inputs that correspond to these abstract inputs, it produces circuit outputs
that corresponds to this abstract output. We adopt a definition of implementation



40 CHAPTER 2. VERIFYING SOME SIMPLE SEQUENTIAL CIRCUITS

based solely on input-output behaviors since the only way that any environment
can distinguish between a good circuit and a bad one is to interact with it through
its 10.

Figure 2.18 shows the behavior of the stack circuit for this input sequence. The
input and output signals are shown with dotted lines, which represent their values
over time. The solid portions of these lines represent the intervals where the values
are actually of interest: the three bits given as input to the push operations, and
the output bit following the pop operation.

Having a notion of implementation based solely on input-output behaviors does
not dictate that the analysis used to prove this property must be based entirely on
10. In fact, it has long been established that it is not possible to uniquely identify
a finite-state system using a fixed test of its 10 behavior [185].

operation push push push pop hold
input 0 1 0 - -

output - - - - 0
cell 0 - 0 1 0 1
cell 1 - - 0 1 0
cell 2 - - 0 -

Figure 2.19: Behavior of abstract stack, including state. State appears below the
horizontal line.

Figure 2.19 shows the behavior of the abstract stack with its internal state
exposed. Figure 2.20 shows the corresponding timing diagram with the circuit's
internal state exposed. (Grey arrows indicate the data transfer.)

This is the natural way to think about a stack. With internal state exposed,
sniowing that the circuit implements the specification becomes much easier. This
is because exposing state makes it clear that system behavior is constructed out of
transitions. Thus, in order to show that the circuit implements the specification
regardless of the input sequence, it suffices to show that it implements the spec-
ification for each transition. Continuing with our example, each pair of columns
in Figure 2.19 represents a transition of the specification. The first column of the
pair gives inputs and state before the transition. The second column gives outputs
and state after the transition. On the other hand, a portion of the timing diagram
in Figure 2.20 represents each corresponding fragment of circuit operation. The
individual fragments are broken apart for illustration in Figure 2.21.

Figure 2.21 shows the individual transitions of the circuit for the first four
operations of the sequence, which correspond to the four pairs of columns from
Figure 2.19. If we check that each circuit transition implements the appropriate
abstract transition, then we need only a way of combining transitions to yield



2.2. THE STACK FROM MEAD AND CONWAY 41

push 0 push 1 push 0 pop hold

phil - .-

phi2

op

in
. .° . . . . . . . . . .

out

0 .

last three signals shown.

"push push1 push 0 POP
Phil f1Phil I L_ phil Phil j1

Pi Ph2_ -[=_F-L Phi Phi _FL _

op o. op op/~

in***. in*** ** in in

. .2..2Fu...... .....2 Transitions of stack circu

~~~~Figure 2.21: Beairofs Tkcransitionsludin state. circuitat osssoh



42 CHAPTER 2. VERIFYING SOME SIMPLE SEQUENTIAL CIRCUITS

behaviors. Then we will have verified that the entire sequence of circuit operations
implements the sequence of abstract operations. Observe from Figure 2.21 that
we can construct the timing diagram of Figure 2.20 by overlapping individual
transitions, aligning the vertical grey lines.

Breaking behaviors down into transitions eases the task of verification, but
even a small system has a large number of possible transitions, more than can be
analyzed exhaustively. Since separately checking each transition in a large system is
still too onerous a task, we will develop symbolic representations. Each will capture
many transitions. It is these symbolic assertions that we will check. From this,
we will be able to deduce that the individual transitions are implemented by the
circuit, and hence that the circuit implements the specification, for all behaviors
(i.e., sequences).

Continuing our stack example, we recall that there are three possible operations.
Each operation has a similar effect, whatever the context that it may occur in.
That is. a push operation in one stack configuration will be very similar to a
push operation in any other stack configuration: the input data will be loaded,
and the contents of each location transferred to the next location. Similarly, a
pop operation will always produce the first location's contents as an output, and
transfer data from each location to the previous one, and a hold operation will
retain data in place, regardless of the particular data values.

This simple observation forms the basis for our expression of several transitions
as a single assertion. For example, the sequence we have been considering in
our example contains three push operations, but they can all be described by
Figure 2.22. Using a symbolic simulator, we can check circuit operation against

operation push -

input a -

output - -

cell 0 b0  a
cell 1 b, b0
cell 2 - bi

Figure 2.22: Symbolic transition for push operation. This table has the same form
as the table of Figure 2.19, but the bits (O's and l's) have been replaced by symbolic
values.

such a symbolic assertion. This effectively checks many transitions at once. The
diagram of Figure 2.23 illustrates the operation of a symbolic simulation model of
the circuit for this symbolic transition.

We can make additional refinements to the assertions, and the basic principle
will remain the same. For example, rather than include both b0 and b, values in



2.2. THE STACK FROM MEAD AND CONWAY 43

push
phil FL--ý

phi2 ....
Constraints ..

out ChecksSout ~...... ::.......C e k

2 g..:: a

1 b
• • ... .I ... Q - '

Figure 2.23: Symbolic patterns to verify push operation. Bits have been replaced
by symbolic values, and simulated circuit state is constrained or checked at only
the times indicated by heavy lines. Constraints and checks are as indicated.



44 CHAPTER 2. VERIFYING SOME SIMPLE SEQUENTIAL CIRCUITS

the assertion, we can use two assertions, each with a single variable b,. Then we
could combine the two assertions symbolically to yield a single assertion containing
a single data variable b, and an index variable i to distinguish the cases under
consideration. It is difficult to see the utility of this on such a small example. In
larger systems this technique, which we call symbolic indexing, can reduce the
number of variables needed from the size of a memory to its logarithm. Symbolic
indexing will be discussed further in section 7.2.

We illustrate part of this technique in Figure 2.24, which shows two assertions
that together represent the same transitions as the previous assertion. It is worth

operation push - push -
input a - a -

output . . . .
cell 0 bo a - a
cell I - bo bi -
cell 2 - - - b

Figure 2.24: Two assertions, covering different storage bits. By intersection, to-
gether they have the same meaning as the assertion of Figure 2.22.

examining more closely how these two assertions represent the same transitions
as the previous assertion: by intersection. The original assertion represented a
set of transitions. Specifically, it constrained system behavior by requiring that
each system configuration that matched the first column must lead to a successor
configuration that matched the second column. For configurations that did not
match the first column, however, their successors remained unconstrained. Each
of the two revised assertions also represents a set of transitions, in a similar way.
The transitions that match the first column of both revised assertions are precisely
the transitions that match the first column of the original assertion. Those are the
configurations whose successors are constrained. Similarly, the the transitions that
match the second column of both revised assertions are precisely those that match
the second column of the original assertion. Thus, the two assertions together
describe the same transitions as the first assertion.

The preceding discussion gives an example of the development of a specification.
We saw how a set of assertions can be used to describe the behavior of a system.
And we also saw how the assertions can be checked individually, when fragments of
circuit behavior (the elements of Figure 2.21) are combined to yield entire behaviors
(Figure 2.20) by aligning markers.

The role of the theory developed later in this thesis is to support a verification
methodology that follows the sketch above. We will develop a formal notion of
implementation as an input-output relationship, and show that we can establish



2.3. VERIFYING DECOMPOSED SYSTEMS 45

such a relationship by exposing internal system state. Then we will show that such
behaviors, with state exposed, can be divided into transitions in the specification
and "marked strings" in the circuit, so that a relation between transitions implies
a relation between entire behaviors. Finally, we will show that this relation can be
checked by checking assertions.

The entire proof that a circuit implements its specification then has several
parts. The first part imposes requirements on whomever is verifying the circuit.
Someone must expose internal state, formalize the relation between specification
state and circuit state, describe the specification using assertions, and (using an
automated tool) check the circuit against each of the assertions. The theory pro-
vides the rest of the proof: that the sequences of circuit operation corresponding
to the checked assertions can be stitched together to yield circuit behaviors, and
that when the internal state is hidden to yield circuit 10 behaviors, a formal re-
lationship, implementation, exists between the them and the 10 behaviors of the
original specification.

2.3 Verifying decomposed systems

Specifying a microprocessor directly is difficult. Furthermore, apart from verifica-
tion, the specification itself is not particularly useful. However, a properly-written
specification of a computer consisting of a processor and a memory system is much
more interesting: it reflects the semantics of the computer's instruction set. Thus.
it is important to be able to verify decomposed systems: to take a specification
for the entire system and an assumption of the correctness of one part (e.g., the
memory system), and verify the correctness of the other part (e.g., the micropro-
cessor).

in.n -2

in cell 0 cl e
out:(.

out.I

Figure 2.25: Decomposition of 3-bit stack into 2-bit stack and additional cell

However, when we examine this figure closely, we see that something is amiss.
The individual components, that is the third cell and the two-b~it stack, cannot
follow a strict Moore machine model. For example, consider the pop operation.
During this operation, the value on the top of the two-bit stack (i.e., the value in



46 CHAPTER 2. VERIFYING SOME SIMPLE SEQUENTIAL CIRCUITS

operation push push push pop hold
input 0 1 0 - -

output - - - - 0
cell 0 - 0 1 0 1

if.n - 0 1 0 -

out.l - - - - 1
cell1 - - 0 1 0
cell 2 - - 0 0 -

Figure 2.26: Hypothetical abstract sequence of decomposed stack. The stack can-
not actually be decomposed at this abstract level, as seen by the violation of the
Moore model by the top cell during the last transition.

We can illustrate the verification of a decomposed system using our now-familiar
stack. Consider a 3-bit stack constructed from a 2-bit stack (cells 1 and 2) and
an additional stack cell (cell 0), as shown in Figure 2.25. Here the 2-bit stack
plays the role of the memory system, and the additional cell plays the role of the
microprocessor. In addition to its input, output, and storage locations, such a
composite system will have two additional locations of interest: the connections
between the new stack cell and the original 2-bit stack. We will refer to the input.
to the two-bit stack in.n (the "input to the next cell") and the output of the two-bit
stack as out.I (the "output of the last cell"). These signals are internal to the 3-bit
stack, so we would expect to treat them like any other internal state of the system.
If we include these additional signals in our abstract view of the stack, we might
expect its behavior on our example sequence to be something like that of Fig-
ure 2.26.



2.3. VERIFYING DECOMPOSED SYSTEMS 47

push 0 push 1 push 0 pop hold

phil

op

in
out .. . 2.. ... .. •. ..... .. . .

out

0 ~............

in..n

out.I
" ~ ~. .ll . -n .• . .n . .. .. ... ... . ... ...

S. . . . " . . . . . . .. ' . . . . . .." " "• - : .. " . .

2
S. .-. . . . . . . . . . . . . . w . • • .... . . . . . . . . . ..

Figure 2.27: Behavior of decomposed stack circuit. This diagram is similar to
that of Figure 2.20, with internal connections exposed. Grey arrows illustrate data
transfer.



48 CHAPTER 2. VERIFYING SOME SIMPLE SEQUENTIAL CIRCUITS

cell 1) must be transferred to the third cell (i.e., into cell 0) via the out.I line. Since
this is an output produced by the pop operation of the two-bit stack, it must occur
in the successor configuration of the pop transition (the last column of the figure).
But since it is also an input of the pop operation on the extra cell, it must occur
in the predecessor configuration of the pop transition (the next-to-last column).

The problem is that the stack cannot be decomposed as a Moore machine. The
stack as a whole can be considered to be a Moore machine (where the transitions
are individual stack operations), but we cannot retain this view of the stack as we
divide it into its components. We must take a finer-grained look at the decom-
posed stack to understand its operation. For example, when we look at its timing
diagram, in Figure 2.27, we can see that it does in fact operate as we would expect.

We wish to show that the decomposed three-bit stack implements the speci-
fication, when we assume that the two-bit stack implements its specification. To
do so, we must examine the role of the signals between the two subsystems, and
the use of our assumption about the 2-bit stack. First, we need to look again at
the two signals in.n and out.I with which the cell communicates with the rest of
the system. From the standpoint of the rest of the system (the 2-bit stack), in.n
is an input and out.I is an output. However, from the point of view of the extra
cell, which is the component we are actually trying to verify, in.n is an output, and
out.I is an input. So (compared to when verifying the 2-bit stack) these two wires
have changed roles.

push 0 push 1 push 0 pop
phil ilF Phphip l .. phil ._..l._Ph

Phi2j j1 Phi2jJl Phi2JlfL Phi2j f1

- .\ ,* . .

in in in n. - in

out out out out

0 0 . 0 0."

in.n in.n . in.n - in.n

out.l out-I out.I - out.l

Figure 2.28: Transitions of decomposed stack cell. Note that in.n is an output
and out.I is an input. Gray arrows indicate the boundaries with respect to which
timing is measured.

If we assume that the two-bit stack is correct, we are assuming that when it gets
its inputs as shown, it produces its outputs as shown. Thus, to verify the additional



2.3. VERIFYING DECOMPOSED SYSTEMS 49

cell, we need to check that its outputs are as shown (i.e., we must ensure that our
assumption applies) but we may assume that its inputs are as shown (i.e., we can
indeed make the assumption, since we have ensured that is applicable). To verify
cell 0 then we make use of the patterns that we would use if were were verifying the
2-bit stack, except that we change them slightly at the interface between the 2-bit
stack, which we are now assuming correct, and the cell we are now verifying: there,
the antecedent and consequent exchange their roles. We can ignore the portion of
these patterns that consider the internal nodes of the 2-bit stack-although they
would be important in verifying the 2-bit stack, we are now assuming that the
2-bit stack is correct. Thus, the patterns we would use to verify the stack cell for
our sequence of operations are as shown in Figure 2.28.

push

Constraints out Checks

out.,I . . . . . .

Figurc 2.29: Symbolic patterr for verifying push operation of decomposed stack
cell. Gray arrows indicate the boundaries with respect to which timing is measured.

When we generalize from individual transitions to assertions, we get symbolic
patterns; Figure 2.29 shows the pattern corresponding to the push assertion.

Decomposition is formalized in Chapter 7.



50 CHAPTER 2. VERIFYING SOME SIMPLE SEQUENTIAL CIRCUITS

2.4 Chapter summary

We have explored two simple sequential circuits to see what it means to say that
they are correct. First, we described a very simple latch. Nonetheless, we found
several aspects which required attention in order to treat the example in a general
way.

We then described a stack and its timing, identifying the need to ensure input
conformity. Then we sketched the steps involved in verifying the stack, using one
particular input sequence as an example. After considering the entire stack, we
considered decomposing it into a smaller stack and an additional cell, and sketched
the verification of the decomposed system.

These simple circuits have served as an introduction to the methodology. The
succeeding chapters will develop the methodology in more abstract form, and eval-
uate it in more detail by means of application to a microprocessor.

We will begin by introducing some mathematics, then discussing the specifica-
tion of systems at an abstract level, using assertions.



Part II

Methodology

51



Chapter 3

Machines and declarative
specification

In order to verify the behavior of a system, we must first specify it. This chapter
discusses- specification of the behavior of data-intensive systems. It explains how
a machine is defined by a set of assertions, gives some examples, and describes a
language in which to write assertions and the semantics of its key elements.

Before delving into such a discussion, however, some mathematical preliminar-
ies are in order.

3.1 Mathematical preliminaries

This section reviews a few of the mathemadical ideas we use in our presentation.
Within this ihesis, all definitions are numbered in one sequence, while propositions,
lemmas, and theorems are numbered in another. Some proofs are deferred; when
such proofs are later given, the original statement is repeated with the original
number.

Definition 1 (Closure) If G is a set and e an associative binary operator, [G].
denotes the *-closure of G. An element g is in [G]. iff there exist finitely many gi
in G, such that g = g, 9g2 0 ... g,,.

We say that G is a set of o-generators of [G)..
We write a dot . to delimit a bounded quantifier, e.g., Vx E S. P(x). The letter

A is as used in the lambda calculus [5.] That is, it binds a parameter and defines
a function. For example, the function defined by the equation f(x) = x 2 or the
expression f: x '-+ x' can also be defined as Ax (x2).

When we discuss a language, the language under discussion is the "object
language" and the language we are using (English and mathematics) is the "met-
alanguage."

53



54 CHAPTER 3. MACHINES AND DECLARATIVE SPECIFICATION

3.1.1 Strings and marked strings

The concept of a string over an alphabet should be famill,. . An alphabet A is a
set of elements called symbols, and a string is an ordered sequence of zero or more
symbols. The set of finite strings over A is written A'. The empty string, that is
the one containing no symbols, is denoted by the Greek letter f. We write a list
of symbols from an alphabet to denote the string containing those symbols in the
order given. When we write two strings adjacently, we intend their concatenation.

In addition to ordinary strings, we will make extensive use of marked strings,
that is, strings over an alphabet augmented by a distinguished marker symbol.
A theory of marked strings is formally established in detail in Appendix A. The
basics of marked strings are given here; proofs are deferred.

phil J phil

phi2 r-.___ phi2 L
op-- l op

a. Timing diagram b. Two overlapped copies

Figure 3.1: Overlap of timing diagram

The basic reason to define marked strings is to provide a formal model analogous
to the controlled, aligned overlapping of two timing diagrams. Consider as an
example the idealized timing diagram shown in Figure 3.1a. Three signals are
constrained during the first two intervals of time, but during the final, third interval
of time, only the first two signai3 are constrained. Suppose that this timing diagram
represents an operation that some circuit performs. Two light gray vertical lines
indicate the beginning and ending of this operation. Notice that although we want
to say that the operation begins at t"c: firzt gray line, some of the signAs have
already been determined during the interval leading up to this instant. We wish
to be able to determine the representation for the operation performed twice in
succession.

Figure 3.1b represents the repetition of the operation-the first diagram twice
in succession. The vertical lines show the times when the first operation begins,
when the first ends and the second begins, and when the second ends. We will
formalize the construction of this diagram from copies of the previous one. Of
course, if we were to combine still more copies, we should get a larger diagram,



3.1. MATHEMATICAL PRELIMINARIES 55

Figure 3.2: Skeleton of a marked string. The two vertical lines represent the first
and last markers in the marked string. The first segment of the horizontal line
represents the part of the string preceding the first marker. It will not contain
any markers. The next segment represents the part between the first and last
markers. (It may itself contain other markers.) The final segment represents the
part following the last marker. It also contains no markers. Any of these three
parts may be empty.

but the final result should not depend on the order in which we put together the
smaller pieces.

Suppose that the letter a represents the combination of values' (0, 1, 1), that
the letter b represents (1,0, 0), and the letter c represents (0, 1, 0). Furthermore,
suppose that the prime symbol, ', represents the gray marker line. Then the first
diagram can be represented by the set of strings { a'bc, a'ba'} and the second
can be represented by { a'ba'bc, a'ba'ba' }. The following sections develop a theory
that allows us to do this, and to find the representation of the second from two
copies of the representation of the first, using an operation we call "overlapped
concatenation."

Another simple kind of diagram is useful in understanding marked strings.
Figure 3.2 shows the "skeleton" of a marked string.

Let A be an alphabet. Define A`* to be the set of marked strings over A, where
a marked string is a string over A' = A U { / } and the symbol I (to be read "mark")
does not appear in alphabet A. The symbol f denotes the empty string. Note that
c E A'*. We say that a marked string is k-marked if it contains k occurrences of
the marker symbol 1, and k+-marked if it contains k or more occurrences. We say
that a string is double-marked if it is 2-marked.

It is important to note that the prime symbol is a marker. That its, a' is not
a variable distinct from a. It is an a followed by a I.

We will need an error indicator, which we denote by T. The functions we define
will be strict with respect to T. Thus we will consider functions over the universe
A`* U { T }. Without further mention we will abuse notation and write A`* when
strictly speaking we mean A' U { T }. We express the usual concatenation by
adjacency, but we let it be strict on T. That is, xT = T = Tx whenever X E A'*.

We will define marked strings inductively.

Ion the nodes phil, phi2, and op respectively



56 CHAPTER 3. MACHINES AND DECLARATIVE SPECIFICATION

Definition 2 (Marked strings) The set A`* of marked strings over alphabet A
is defined inductively by the equations:

f• E At*
TEA

Ix E A'* for x E A'

ax E A" for a E A and x C A"

For example, e (the empty string) and a and abc and a'bc' and a'b and '' are
all marked strings, and T (the error indicator) is also a marked string. Since
concatenation is strict on T, expressions such as /T are not marked strings. The
length of a marked string x is written I x, and we do not count the markers when
measuring the length.

Marked strings share many prefix and suffix properties which are symmetrical.
Defining the reversal of a string makes it convenient to exploit this symmetry.

Definition 3 (Reversal) If i is a marked string, its reversal iR is given induc-
tively by the equations:

R

TR =T

(,X)R =(XR

(ax)R = XRa

For example, (a'bc')R = 'cb'a.
We can build up lattices of marked strings.

Definition 4 (Marked prefix and suffix orders) The relation Cp is given by
induction.

Cp X

x Cp T

ax Cp ay whenever x Cp y

Ix Cp ly whenever x Cp y

x •P ly whenever x Ep y

The relation x Eu y is defined to hold exactly when xR C P yR does.

For example, the relations c Cp a and a r-p ab and ab E-p a'b all hold.
The relation 1:P is similar to the familiar prefix ordering of strings where a

string x is "less than" another string y if x is a prefix of y. The innovation here
is the addition of the marker. Intuitively, inserting markers anywhere in a string
produces a larger one.

We can define an operation that lines two marked strings up at their left-hand
edges and joins them together.



3.1. MATHEMATICAL PRELIMINARIES 57

Definition 5 (Marked prefix and suffix joins) The binary operator ULp is given
inductively.

xLJT=T

TUpx= T

C UP x = x

x UP f = 3:

/x UP ly = l(x up, y)
Ix up y = '(X Up y)

x UP fy = /(x Up y)
ax Up ay = a(x up y)

ax Up by= T

The operator x U, y is defined as (xR Up yR)R.

Observe that we have covered the entire set A".
For example, a'b Up a'b = a'b while aa'b Up a'b = T. On the other hand,

a'bb Up a'b = a'bb. Finally, 'ab' Up a'b' = 'a'b'b'.
The operator Up is similar to the familiar least upper bound on prefix ordering.

Again, the innovation is the marker. In the ordinary prefix ordering, the least
upper bound of two strings is the longer of the two, if the shorter is its prefix, and
is T if the shorter is not a prefix of the longer. Adding markers to the ordering
requires inserting of the markers from both of the operand strings. In fact, the
same correspondence between joins and asscciated orders holds with the markers
included.

We can also define the prefix meet of marked strings. It is not particularly
useful, except in developing the lattice theory.

Theorem 1 The structures (A'*, up, rip) and (A'*, U., F,) are lattices.

The proof consists of showing that the meets, joins, and partial orders have
the proper relationship. Theorem 1 allows us to use lattice theory when needed in
proofs.

We can break marked strings into convenient pieces at the first or last marker.
We will soon use the pieces to define an overlapped concatenation operator. Fig-
ure 3.3 shows these parts.

Definition 6 (Clean prefix and suffix) If i is a marked string, its clean prefix
(or "first" part) F(i) is given inductively:

F(E) = c

F(T) = T

F(ax) = a F(x)

F(lx) =



58 CHAPTER 3. MACHINES AND DECLARATIVE SPECIFICATION

F FR

LR L

Figure 3.3: The parts of a marked string, in skeleton form. The function F extracts
the part before the first marker. The function L extracts the part after the last
marker. The function FR extracts the "rest" left over from F, and LR extracts
the "rest" left for from L.

If :i is a marked string, its clean suffix (or "last" part) L(i) is defined to be
(F(;iR))R.

Definition 7 (Marked suffix and prefix) If i is a marked string, its marked
suffix (the "rest" left after removing the "first" part and the demarcating marker)
FR(&) is given inductively:

FR(e) = e

FR(T) = T

FR(/x) = x

FR(ax) = FR(x)

If £ is a marked string, its marked prefix (the "rest" left after removing the "last"
part and marker) LR(l) is defined to be (FR(iR))R.

For example, the equations F(a'bc) = a and L(a'b'c) = c and FR(a'b'c) = b'c
and LR(a'b'c) = a'b all hold.

Using these parts, we can define an overlapped concatenation operator which
aligns the first marker of the last string with the last marker of the first string.
The formal definition may at first be a bit opaque, but the skeletons shown in
Figure 3.4 illustrate the intuition behind the definition.

Definition 8 (Overlapped concatenation) The overlapped concatenation of marked
strings x and y is written x/ly and is defined to be the marked string

(LR(x) U, F(y))1(L(x) Up FR(y)).



3.1. MATHEMATICAL PRELIMINARIES 59

LRWx L~x)W

F(y) FR(y)

Figure 3.4: Skeletons of overlapped concatenation. The marker in the middle is
obtained by aligning the first marker of the last string with the last marker of the
first string. The portion before this marker is taken by forming the suffix join of
the parts of each constituent that come before this marker. The portion after this
marker is taken by "orming prefix join of the parts of each constituent that come
after the marker.

When there is no conflict, overlapped concatenation yields a real marked string.
For example,

a'ba'/la'bc` = (LR(a'ba') U. F(a'bc'))' (L(a'ba') Up FR(a'bc'))
= (aba U, a)'(c Up b')
= a'ba''

When there is conflict, it yields T, which can be thought of as an error indicator.
For example, expanding a'bd//a'b, from the definition yields (a'bc U, a) = T so
(since concatenation is strict) a oic'#a'ba' = T.

Theorem 2 The operator / is associative.

This may seem obvious, but is necessary to employ a trick in its proof, by
showing that two different joins are associative under the proper conditions, and
that these conditions apply.

We ultimately wish to construct mappings that are homomorphic over /1. We
will need slightly more machinery for this.

This function "cleans" the last marker off of a string.

Definition 9 The function CL is defined by the equation CL(x) = LR(x) L(m).

This function has some properties that we will find useful.

Le._.a 3 If - i, •- marked then x = CL(x)//x.



60 CHAPTER 3. MACHINES AND DECLARATIVE SPECIFICATION

Ck(x)...

Figure 3.5: Dropping the last marker.

CL(y)

Figure 3.6: Dropping the last marker and aligning in preparation for overlapped
concatenation.

The skeletons in Figure 3.5 illustrate the idea behind this lemma.
If a string has at least two marks, it does not matter whether we drop the

last marker before or after performing an overlapped concatenation. Figure 3.6
illustrates the idea here.

Lemma 4 If y has 2 or more marks, then x// CL(y) = CL(x/y).

Later we will need to compare marked strings while ignoring certain aspects
of them. One such view is compatibility. Two marked strings are compatible if
their "first" and "rest" parts are not in conflict. We will also sometimes need to
consider the lengths of both these parts.

Definition 10 (Compatibility) If strings x and y are 2-marked, we will say that
they are compatible, and denote this by x - y, if and only if neither the expression
F(CL(x)) U, F(CL(y)) nor FR(CL(x)) Lip FR(CL(y)) is equal to T.

Definition 11 If string x is 2-marked, the measurements of x, denoted IjxII is the
pair (I F(CL(x))I, I FR(CL(x))t). If x is 1-marked, Ixil = (I F(x)l, I FR(x)j).

The usefulness of compatibility is given by the following proposition.

Proposition 5 If x and y are 2-marked then x -- y iff CL(x)//y 0 T.

Compatibility and the same measurements imply a useful equality.



3.1. MATHEMATICAL PRELIMINARIES 61

Proposition 6 If two 2-marked strings have the same measurements, that is, if
the equality IlxII = IlyII holds, and x -- y, then CL(x) = CL(y).

In defining the meaning of an assertion mapped onto a circuit, we will need to
form sets of incompatible strings.

Definition 12 If A is a set of 2-marked strings, all of the same measurements,
the notation A denotes the set { x IVy E A.lIxll = I yil A x y }.

In defining the formal semantics of a mapping language, we will need the fol-
lowing definition, which i, is not otherwise required.

Definition 13 If x is a marked string, F is a superset of the alphabet, and (f, I) is
a pair of nonnegative integers, define extrf,,) as follows. Let the pair (m, n) = I I
denote the measurements of x, let f be max(m, f) and let 1 be max(n, 1). Then
the extension of marked string x to alphabet F with lengths (f, 1) is defined by the
following equation.

extrf,I) {Y I Y • x and Ilyll = (f,i) }

Intuitively, the function ext extends a set of marked strings so that every string
in the set has measurements of at least (f, 1).

3.1.2 Homomorphisms

A homomorphism is a mapping between two different sets each of which has some
structure. The structure of the sets must somehow be similar, and the mapping
must preserve this structure.

Definition 14 (Homomorphism) If A and B are sets, and fA: A x A -+ A and
fB: B x B -+ B are functions, a mapping h: A -+ B is a homomorphism (with
respect to f) if for every x and y in A, the equality h(fA(x, y)) = fB(h(z), h(y))
holds.

Often the functions fA and f8 are denoted by the same symbol, which is written
as an infix operator. Although traditional, the functions need not have arity two;
the generalization is straightforward. When fA = fB, and this function has arity
one, we say that functions fA and h commute.



62 CHAPTER 3. MACHINES AND DECLARATIVE SPECIFICATION

3.1.3 Set-valued functions and nondeterminism

A nondeterministic system, object, agent, or function2 is one which may exhibit
many possible behaviors, for example, by selecting one according to some random
variable that we cannot observe. At any particular time, though, it exhibits only
one of its several behaviors. We do not know which behavior it might take, so we
represent its behavior using the set of all possibilities.3

We often write expressions that strictly interpreted seem to apply functions to
subsets of their domain, rather than to elements of their domain. Such notations
denote the image of the set under the function. In other words, we extend functions
freely to sets.

Definition 15 (Set extension) If S is a subset of the domain of F, F(S) de-
notes the image of S under the mapping F. More precisely, if F is single-valued and
S is any subset of its domain, F(S) denotes the T such that F: S -4 T is surjective.
If F is set-valued, F: S -+ 2 T is surjective with respect to T if T = Uses F(s).

We will also extend binary operators on elements to sets, similarly. Sometimes
we will include an "error indicator," denoted T, in the domains we consider. In
particular, marked strings include this error indicator. In extending operators to
sets, we exclude this value as follows. Let S be such a set. For a binary operation
0 : S2 -+ S over such a set, its extension is 9 : (P(S))2 -+ IP(S) defined by the
equation:

QGR= U Uqr}) -I T}

Proposition 7 If * is an associative operator on elements and is strict4 on T, its
extension to sets is also associative.

Proof: Let capital letters denote sets and small letters denote elements. Suppose
the extension is not associative. Then A * (B * C) #- (A * B) * C. Without loss
of generality, pick an e E A * (B * C) but not in (A s B) * C. Then there exist a,
b, and c, such that e = a*(b*c). But by hypothesis ae(b*c) = (a b)•cso
e E (A a B) e C, contradicting our assumption. N

The strictness condition is necessary to ensure that when we throw the T element
out of sets, it stays thrown out.

2The reason we prefer set-valued functions over relations will become clear in section 5.2.2
3This blurs the distinction between set-valued functions and relations. (In fact, in some

formulations of type theory [4] the two are not distinguished.)
4strictness was defined in the text just before Definition 2, p. 55



3.2. AGENTS AND MACHINES 63

3.1.4 Set-valued homomorphisms

A similar definition of homomorphism can be used when the functions are set-
valued, i.e., nondeterministic. This requires that the functions commute for every
nondeterministic possibility. All the cases below can simply be considered as the
extension of the original definition to sets.

If h is set-valued, then h is a homomorphism if for every i E h(fA(x, y)) there
are i and ý in the sets h(x) and h(y) such that i is equal to fB(&i, ý), and for every
i and ý in the sets h(x) and h(y) there is a i in the set h(fA(x,y)) such that i is
equal to the value fB(i, 9).

If f (i.e., fA or fB or both) is set-valued, then h is a homomorphism if for every
z in the set fA(x,y), the element h(z) is in the set fB(h(x), h(y)), and for ever i
in the set fB(h(x),h(y)) there is a z in the set fA(x,y) equal to h(5:).

If f and h are both set-valued, then h is a homomorphism if for every z in the
set fA(x, y) and every 5 in the set h(z) there are values 5: and 9 in the sets h(x)
and h(y) such that 5 is in the set fB(i,y), and if for every i and 9 in the sets h(x)
and h(y)-, for every 5 in the set fB(i,y) there is a z in the set fA(x,y) such that 5
is in the set h(z).

3.1.5 Compositions of homomorphisms

The composition of two homomorphisms is also a homomorphism. For the standard
case, this is obvious. It is also true if either or both of the functions is set-valued.
The details are completely standard, and there are no tricks involved.

3.1.6 Partial functions

Partial functions are those which do not yield a value for some inputs. When
we model nondeterminism with set-valued functions, we note that the empty set
is in the range of nondeterministic partial functions. It is not in the range of
nondeterministic total functions.

A binary operator that is partially defined is associative if the result of applying
the operator in every order is defined exactly when the result is defined in any order,
and if so has the same value for all orders. In other words, using the notation of
operators extended to sets, // is associative if (a//b)//c = a//(b/c).

3.2 Agents and machines

Having established our ground, we can turn to the systems we are interested in.
Before we can consider specifications of systems, we must have some idea what
kind of systems we wish to specify-we must select a model of computation.



64 CHAPTER 3. MACHINES AND DECLARATIVE SPECIFICATION

This section begins by making some basic definitions regarding abstract agents.
An agent is something having inputs and producing outputs. (Abstractly it is a
nondeterministic function with a few special properties.)

3.2.1 Abstract agents

We define an agent M to be a set-valued' function as follows. Its domain is
called the agent's set )f inputs, ins(M). Its codomain is called the agent's set
of behaviors, beh(M). From the behaviors we must be able to return to the
inputs with a projection function II. Thus ins(M) = [I beh(M). Furthermore, if
v E beh(M) then v = M(Hv). We refer to { v I i = flv } as the set of behaviors
consistent with input i.

Intuitively, an agent can be thought of as a function that includes a copy of its
input in its output.6 Figure 3.7 illustrates this idea.

agent fnto

Figure 3.7: Formation of an agent from a function. The agent takes an input (from
the left) and produces an output that includes a copy of the input.

All of this together is called the agent's signature: the agent M itself, arll:.i the
sets ins(M) and beh(M), and the projection function II.

3.2.2 Sequential machines

We can relate this abstract view of an agent to a more familiar model of sequential
machines. Let a sequence machine (or simply machine) be an agent M whose
ins(M) = inp(M)* and whose beh(M) = config(M)*, where inp(M) is a set called
the input alphabet and config(M) is a set called the configuration alphabet, and
inp(M) = 11 config(M), with H on beh(M) its pointwise extension.

Since sequence machines are agents, implementation is defined between them.
Mealy machines and Moore machines are sequence machines whose behavior

is determined by a relation' called the transition relation:

steps(M) C config(M) x config(M)

'it is set-valued to represent nondeterminism
'Keeping a copy is a technical detail which will simplify some later proofs.
7We use a transition relation rather than a transition function so that we can construct it by

set intersection.



3.2. AGENTS AND MACHINES 65

For such machines, we define M(i) to be the set8

{v = riv A Vk E [0, [i[- 21 .(vk, vk+') E steps(M)}

where Jil is the length of the input sequence i, and vk denotes the k-th element of
sequence v. We will be concerned with Moore machines, although other machine
models can also be related to the notion of agents.

Nondeterministic Moore machines

Moore machines are straightforward. Since inp(M) = 11 config(M), and II is a
projection, we can say that config(M) = inp(M) x res(M) where res(M) represents
the "results" of M, i.e., its states and outputs. The we can define 1I, to be the
projection such that res(M) = 11, config(M). A Moore machine is a machine such
that (v,, v,) E steps(M) and Ilrv, = Hrit, implies (v,, OD) E steps(M). In other
words, the transition relation determines the next state, but not the next input.

This definition of a Moore machine given here differs from the standard de-
scription, which is usually given in terms of a next-state function and an output
function. The skeptical reader might take a moment to verify that our definition
is in fact equivalent to the more standard one.

Mealy machines

Though we will not use Mealy machines in this thesis, they can be similarly de-
fined. A Mealy machine is more complex, because it distinguishes state from
output. Formally the results, res(M), are split into outputs and states, that is,
res(M) = out(M) x states(M). We can define projections II,, and R, according
to the equations out(M) = llores(M) and states(M) = WI res(M) respectively.
We then define a relation outrel(M), which is any subset of config(M) such that
for every i E inp(M) and every s E states(M) there is an o E out(M) such
that (., s, o) E outrel(M). In other words, for each input and state there is at
least one output. Finally, we say that a Mealy machine is one such that for any
(va, vc) E steps(M) and for any O• E outrel(M), for every llvc = H,6O it is the
case that (V,, O,) E steps(M).

In other words, the set res(M) denotes the outputs and feedback of the machine,
but excludes its inputs. Since a Mealy machine distinguishes outputs from state,
we use 7io in our model to identify the outputs, and II, to identify the state. The
condition that defines a Mealy machine is that the inputs and current state at any
time determine the possible outputs at the same time, and the state at the next
time. So the transition relation determines the next state, but not the next input
or output.

8The number 2 occurs since we number sequences beginning with 0, and there are one fewer
transitions (fence rails) than configurations (fence posts).



66 CHAPTER 3. MACHINES AND DECLARATIVE SPECIFICATION

Henceforth we will confine our attention to Moore machines. This ensures
that our model reflects the delay between stimulus and response present in any
physical system.9 We will often speak of states when strictly speaking we mean
configurations (i.e., states and inputs).

3.3 Core of a specification language

Having considered wh'at a machine is, we turn now to a way of expressing the de-
sired behaviors of machines. We will express desired behaviors by defining machines
that exhibit them, using a declarative specification language. Fundamentally. the
specification language is rather simple. A specification consists of the declaration
of some state variables, followed by some assertions. The state variables deter-
mine the state space10 of the machine being specified. The assertions determine
its transition relation.

Each assertion consists of two parts, an antecedent and a consequent. Each
of these is a formula written in a restricted logic, and contains occurrences of two
kinds of variables: the state variables, and the case variables.) Case variables are
variables which appear in the specification, but are not a component of the state
space. Their role is simply to keep specifications concise.

The antecedent and consequent are formulas, which are restricted to a few
simple forms: either 1) an equivalence, containing exactly one state variablc, which
is its left-hand side, or 2) an implication whose antecedent involves only case
variables, or 3) a conjunction of sub-formulas, or 4) an existential quantification
of a case variable.

These restrictions are needed to apply trajectory evaluation (see section 7.4.
p. 174) to check specifications. They do restrict the form of specifications. For
example, to express the equivalence a = b when a and b are state variables, i* is

necessary to write a = c A b = c where c is a case variable. This ensures that no
additional variables need be introduced befo.e trajectory evaluation. In practice.
fo, many circuits the restrictions are not burdensome. Disjunction f V g can be
synthesized by 3b.b -+ f A f g 9. The only logical connective then lacking is
negation.

This section gives the meaning of the key constructs of a specification language
for finite-state systems. Many features of the filll specification language. such as its
function definition facility, are rather standard. While such features are necessary
in a practical language- their formal treatment does not contribute markedly to
the understanding of a verification methodology.

9This observation is due to Vctor Yod.qiken.
'°Strictly speaking. they determine the configuration space.
""The reason to distinguish these two kinds of variables was discussed in section 2 14 on

page 29.



3.3. CORE OF A SPECIFICATION LANGUAGE 67

Thus, we begin by giving the syntax and semantics for a core subset of the
specification language. This subset encompasses the language's interesting fea-
tures. Although the portions of the language that are not treated here contribute
much to the language's usefulness, they do not markedly affect its semantics. In-
cluding a complete semantics for the language would obscure the essential point
of this section: that a specification denotes a state machine.

3.3.1 A core subset
A specification in our language consists of three sections, according to the syntax
illustrated in Figure 3.8.12 The first section defines some types, the second section

defines the state or configuration space, and the third section defines the transition
relation.

spec- esc s taesec a ec

Figure 3.8: Syntax of specifications (language subset). The spec is the specifica-
tion. The typesec is the type section. The statesec is the state-variable section.
The assnsec is the assertion section.

The type section gives symbolic names to one or more types, according to the
syntax in Figure 3.9.

typesec types narne type

t~ype

Figure 3.9: Syntax of type definitions (language subset). The typesec is the type
section. A num is a number.

The state-space section names a set of state variables, according to the syntax
in Figure 3.10. There are two kinds of state variables: scalars and arrays. Arrays
are indicated by th, presence of a subscript type.

"I21n this and the related syntax diagrams. literal values are shown in a bold face, while terminal

and nonterminal symbols are shown in italics.



68 CHAPTER 3. MACHINES AND DECLARATIVE SPECIFICATION

statesec states

sde f name typename typename

Figure 3.10: Syntax of state variable declarations (language subset). The statesec
is the state-variable section. A sdef is a state-variable definition. A typename is
a' name previously defined in the type section.

The transition-relation section defines a transition relation by means of a set of
assertions, according to the syntax in Figure 3.11. Each assertion consists of a set
of case-variable declarations,"3 followed by a pair of formulas, the antecedent and
the consequent of the assertion. A case-variable declaration consists of a series of
declarations, which associate types with variable names.

assr.sec assertions assn

assn cdecls form ==> form

cdecls decl -name . typename

Figure 3.11: Syntax of assertions (language subset). The assnsec is the assertion
section. An assn is an assertion. The cdecls are the case-variable declarations.
A form is a formula.

Each of the formulas in an assertion has a recursive structure according to
the syntax in Figure 3.12. A formula can be a case restriction, a conjunction, a
primitive scalar or array formula, or an existentially quantified formula.

"13Chapter 2 discussed the distinction between state variables and case variables.



3.3. CORE OF A SPECIFICATION LANGUAGE 69

fo~rm bool expr -> fom

Figure 3.12: Syntax of formulas (language subset). A form is a formula. A
boolexpr is a boolean expression. An expr is an expression. A svname is a
state-variable name. A cvname is a case-variable name.

Expressions in the subset are quite simple: they can be constants, case vari-
ables, or sums, according to the syntax in Figure 3.13.

expr + expr

cvname

Figure 3.13: Syntax of expressions (language subset)

Example

The language subset retains the unique feztlires of the sptvuification language. With
only minor variations, the latch example we saw earlier can be specified with the
subset. The latch example of Figure 2.8 is repeated in Figure 3.14 using only the
essential subset language. The only difference is that the choice of latch operations
must be encoded as a bit rather than given a symbolic name.

The goal of the semantics of the specification language is to provide a formal
definition of the transition relation from the syntax of the specification language.
We turn now to the semantics. The following section gives the semantics of the



70 CHAPTER 3. MACHINES AND DECLARATIVE SPECIFICATION

types bit integer range 0 to 1.
state op : bit;

D : bit; Q: bit.
assertions

decl b : bit;
op 1 \ D = b > Qb;

decl c bit;
op 0 I\ Q=c = > Q c

Figure 3.14: Abstract specification of a latch in the subset language. Compare to
Figure 2.8.

subset language, then illustrates with an example how this assigns the transition
relation of a latch to the text of the latch example.

3.3.2 Semantic equations

We can define the meaning of a specification formally by organizing a set of equa-
tions around the syntax of the language. The following equations define the se-
mantics. Types are denoted by sets. The letter E refers to an environment, i.e.,
a mapping from names to types (sets). The letter N refers to the set of system
variables, i.e., those variables which describe the state space (and input space) of
the system being defined. The letter V refers to the current set of case variables,
i.e., those variables which describe the cases being analyzed or distinguished.

A type expression denotes a set. A type definition augments its current environ-
ment E with a new binding. A sequence of type definitions operate in succession.
The type definition section starts from the empty environment, i.e., the one con-
taining no bindings.

[[integer rangelto h]] = {1l + 1,. .. ,h - 1,h}

[[name typel](E) = E:name '-+ [[type]]

[[typedef ; typedefs]](E) = [[typedefs]]([[typedef]](E))

[[types typedefs .1] - [[typedefs]](0)

A scalar system-variable declaration augments its current environment with a
new binding which maps the name of the new variable to its type (i.e., set). It
also augments the set of state variables with the name of the new variable. A
vector declaration does the same. However, the type is more complicated- it is
the vector's value type, raised to a Cartesian power given by the size of its index



3.3. CORE OF A SPECIFICATION LANGUAGE 71

type. In other words, it "contains" an element of the value type for each location
in the vector. A sequence of variable declarations operates in succession. The
state-variable section starts with the empty set of state variables.

[[name: typename]](113,N) = (E: name '-4 E(typename),N U {name})

[[name [ typenamej ]: typenamej](E,N) =

(E : name -+ E(typenamev)IE(tpename)l ,N U {name})

[[sdef . sdefs]](E,N) = [[sdefs]]([[sdef]](E,N))
[[state sdefs .]](E) = [[sdefs]](E,@)

A case-variable declaration augments its current environment with a new bind-
ing which maps the name of the new variable to its type. It also augments the set
of case variables with the name of the new variable. A sequence of case variable
declarations operates in succession.

[[decl name: typename]](E,N,V) =

(E:name ý-* E(typename),N,V U {name})

[[cdecl ; cdecls]](E,N,V) = [[cdecls]]([[cdecl]j(E,N,V))

Thus far we have required only types and variables. We will soon have need
of assignments, i.e., valuations for sets of variables. Ultimately, however, we wish
to define state machines. The most natural way to think of the state in a state
machine whose state is determined by several values, is as a cross product S which
is the cross product of the possible values that each state element can take on. It
is convenient to abbreviate the set of possible valuations, and the set of possible
states, using T and S respectively.

T(E,N) = {O:N -+ U~ E(n):{n} -* E(n)}I hEN

S(E,N) = x E(n)
nEN

Since the valuations are intended to be states, we need to show that the two
functions above are isomorphic. This is clear since each state in S chooses for each
n E N an element of E(n), and this is exactly what any assignment in T does.

We can define a similar notion for the case variables and the set of cases that
they define.

t(E,V) = {O: -+ U E(v):{v} -+ E(v)}f vEV

C(E,V) = x E(v)
vEV

Now knowing what a valuation is, we can define the meaning of expressions. An
expression consisting of a case variable name is interpreted relative to some partic-
ular case, i.e., relative to a. valuation of the case variables. A constant expression



72 CHAPTER 3. MACHINES AND DECLARATIVE SPECIFICATION

needs no interpretation. A compound expression is interpreted by interpreting its
pieces and applying its operator.

[[cvnameJ](E,N,V,0) = k(cvname)

[[constant]] (E,N, V,O) = constant

[[expr l + expr 2 l](E,N,V,¢) = [[expr 1l](E,N,V,¢) + [[expr2](E,N,V,k)

Next, we can define the meaning of formulas. A formula is interpreted relative
to some particular state, i.e., relative to a valuation of the state variables. We
think of a primitive scalar formula as meaning that some state variable-the one
mentioned in the formula-has some value-the value of the expression mentioned
in the formula. Thus, we say that a simple formula is true in some case and some
state when the state variable, interpreted according to the state, has the value
given by the expression, interpreted according to the case.

[[svname = ezpr]](E,N,V,0,0) = (O(svname) = [[expr]](E,N,V,0))

A primitive array formula has a similar meaning. Recall that a state assigns to
an array variable an array value, i.e.. a Cartesian power, or cross product, of
constituent scalar values. Thus, we say that a primitive array formula is true if the
selected element of the value of the array variable-i.e., the component given by a
projection function determined by the'value of the indez expression (interpreted
relative to the case)-has the value given by the value expression (also interpreted
relative to the case).

[[avname [-expr I = e -pr-J
(Il[[cxpril](E,N,V,,¢)'(avname) =_ [[exprJ]]( E,N,V ,0) )

A case restriction is a form of implication. It is intended to mean that a formula
is true in those cases in which some boolean expression, or guard, is true. Thus,
we say that a case restriction holds if the guard is false (relative to the case), or if
the subformula is true (relative to the case and the state).

[[boolexpr - > form!](E,N,V',',) =

[[boolexpr]](E,N,V,¢) V [[form]I(E,N,V,¢, .0)

Conjunction is straightforward, since the meaning of a formula is a logical truth
value.

[[form1 /\ form2]](E,N,V,0,0) =

[[forml]](EN,V,,iP) A [[form2]](E,N,V,k,0)

An exist•ential quantifier is intended to mean that a formula is true if there is any
value for the quantified case variable which makes the subformula true. Since we



3.3. CORE OF A SPECIFICATION LANGUAGE 73

have constructed the semantics so that the meaning of the subformula is a logical
truth value, we can express the quantifier directly in our metalanguage.

[[exists cvname . form]](E,N,V,¢,t) =

3v E E(cvname).[[cvname]](E,N,V,¢:cvname i-+ v,b)

An assertion is the most subtle element of the state-machine language, and it
is still rather straightforward. We think of an assertion as being an implication.
However, the verification theory underlying the language treats an assertion as a
superset of a state machine's transition relation. Thus, we want an assertion to
denote a set of transitions-a set of pairs of states.

The meaning of a bare assertion is given relative to the environment in which it
appears. This includes a set of bindings E and a set of state variables N and a set
of case variables V. In each of the cases defined by the case variables, the assertion
denotes a set of transitions, or "case set." The assertion denotes the intersection
of all of these case sets.

[[forma => form,]](E,N,V) =

fl {(v'a,Obc) E S(E,N)2 [[Ifrmaf](E,N,V,0,Vk) V [LformjI(E,NV,0,tC)}
.ýC(E,V)

The meaning of a bare assertions was defined relative to a set of case variables.
Case declarations establish such sets. The denotation of an assertion together with
its case variable declarations is given by applying the case variable declarations in
a context having an empty set of case variable declarations, then applying the
meaning of the bare assertion to the result. Thus, an assertion with case variable
declarations denotes a set of transitions, defined relative to a set of bindings E and
a set of state variables N.

[[cdecls bare -assn]] (E,N) = [[bare-assn]] ([[cdecls]] (E,N,O))

A set of assertions denotes the intersection of the denotations of the individual
assertions.

[[assn ; assns]j(E,N) = [[assnl](E,N) n [[assnsl](E,N)

With this machinery in place, the meaning of an entire specification is straight-
forward. It is given by establishing an initial binding of type names in the type
section, augmenting this binding and establishing state variables in the state vari-
able section, and finally determining a set of transitions in the resulting context.

[[typesec statesec assnsecj] = [[assnsec]] ([[statesecl] ([[typesecj]))

Interpreting a specification using the preceding definitions yields a transition
relatio-, defined by a set of assertions. This is exactly the kind of specification that
our theory will expect.



74 CHAPTER 3. MACHINES AND DECLARATIVE SPECIFICATION

--------------

-- -- -- ------ .. " 10 o

o ---- -b-- -b-
I P,'00 1101

000

\7D-b, b-aOO 1A b b--1

o op-l []0-b, tb=O a~z CoP=1 00)-b.b=

a.b=0case b.b=l case

Figure 3.15: Transitions associated with individual cases of the "load" assertion of
the latch. Transitions given explicitly by the antecedent and consequent are shown
in black. Transitions that are implicit from the antecedent are shown in grey.

Example

Given these semantic equations, we can return to the latch specification in Fig-
ure 3.14 (page 70) in order to see how it defines a transition relation. The type
definition section of the latch specification establishes a mapping from the name
bit to the set { 0, 1 }. The state-variable declaration section augments this map-
ping so that each of the names op, D, and Q also maps to this set. It also establishes
the set of state variable names, { op, D, Q }. A valuation for the state variables-a
state of the specified system-is then a string of three bits giving the values of op,
D, and Q respectively.

Figure 3.15 shows the transitions defined by each case of the first assertion. 14

The assertion begins with the declaration of the case variable b. Thus there are
two cases to consider for this assertion: the case where b is 1, and the case where
it is 0. Consider the first case. The antecedent of the assertion then is true in the
states 100 and 101. The consequent is true in states 000, 010, 100, and 110. Thus
the entire assertion, for this case, denotes a total of 56 transitions: 8 for which the
antecedent is true, and 6. 8 or 48 more for which the antecedent is false. In the
second case, the assertion also denotes 56 transitions.

"I1n examining these diagrarms, it is less important to see all the details of the first figures than
it is to understand how they are combined to produce the final result.



3.3. CORE OF A SPECIFICATION LANGUAGE 75

110 : 111

ii . " 010 Oil"01

000 001

Figure 3.16: Transitions of "load" assertion.

Figure 3.16 shows the transitions defined by the entire assertion-the intersec-
tion of the the two cases. The intersection denotes 48 transitions: 16 for which an
antecedent is true, plus 4 -8 or 32 more for which neither antecedent is true.

Figure 3.17 shows the Lfansitions for each case of the second assertion. In each
case there are 56 transitions. When we take their intersection, in Figure 3.18, we
also find 48 transitions for this assertion.

Finally, taking the intersection of the sets of transitions from each assertion
yields the final transition relation. Figure 3.19 illustrates these transitions.

We can examine this diagram to see that it really represents a latch if we think
of the vertices as defining a cube in space. The bottom represents the "hold"
operation being applied as an input, while the top represents the "load" operation.
The left and right sides represent the two state values. We can immediately see
that when the "hold" operation is applied, the state will not change (i.e., there are
no transitions at the bottom of the cube that cross from one side to the other). We
can also see that when the "load" operation is applied, if the input that is applied
is equal to the present state value, the state does not change (i.e., there are no
crossing transitions that leave the two upper comers that have self-loops). Finally,
we can see that if the "load" operation is applied and the input value differs from
the current state, the state will change (i.e., all transitions leaving the other two
upper corners cross to the other side of the cube).

Thus, we can see that the entire latch specification denotes the transition rela-
tion of a latch.



76 CHAPTER 3. M4CHINES AND DECLARATIVE SPECIFICATION

- - - - - - - - - - - -- " I
-- :110~11 till- 1 --

- I - I - 11

-G I

100 101 b c0a

II 01)10

..........--. /.-010 -- 011 - - 010 01

I ,
-

OD 0000a
000 D01 00

A oc, c=a C 7oCC=O

a. c case b.c =O0case

Figure 3.17: Transitions associated with individual cases of the "hold" assertion
of the latch.

- 110 - M li

-- -- - - - - -

100 101

I - -

- 010 I- 01

- -- -

000 01-

Figure 3.18: Transitions of "hold" assertion



3.3. CORE OF A SPECIFICATION LANGUAGE 77

Figure 3.19: Transitions of latch specification

3.3.3 Formalization of assertions

We can relate the semantics of the language to the model of computation we
have been discussing, but first we should examine what it is that makes a set of
assertions an intuitively attractive and concise device for specification.

Principles underlying the structure of assertions

Assertions structure the set of transitions of a system according to two principles:
parameterization and independence. Abstractly an assertion can be thought of as
a set of transitions, or equivalently as a pair of sets of states. First, tne behavior of
many systems can be divided into a few similar parts. (We are mainly concerned
with systems whose controllers are simpler than data paths.) For example, a stack
has two basic operations, push and pop (plus perhaps a no-op or idle operation,
and an initialization operation). We would like to specify each of those similar
parts in a parameterized way, independent of the particular data values stored on
any particular operation.

Thus, instead of giving the sets A and C of an assertion directly, we give sym-
bolic formula describing them. Such a symbolic assertion represents conceptually
many assertions, one for each valuation of the variables that appear in the formulas
describing A and C.

Additionally, most systems consist of several parts, only some of which are used
on any particular operation. We would like to specify such independent aspects of
operation in an independent way. For example, a memory circuit has many storage
locations. We would like to specify that each location retains data independently
of any operation performed on a different location.



78 CHAPTER 3. MACHINES AND DECLARATIVE SPECIFICATION

The key to both of these requirements is that we be able to check lifferent
sets of transitions separately, and somehow combine the results. As we shall see,
assertions provide a mechanism for meeting both requirements. We now formally
define an assertion.

Definition 16 (Assertion) An assertion N over a Moore machine M is a pair
A, C of sets where each of A and C is a subset of config(M). The set A is called
its antecedent, and the set C is its consequent.

Subsequently we will abbreviate config(M) with UM.
As we discussed in section 3.2.2, the transition relation of M is a subset of Umt

(i.e., a subset of config(M) 2 ). An assertion represents a superset of the transition
relation. More specifically, the transition relation is defined to be the intersection
of all the sets that the individual assertions represent.

Denotation of assertions

An assertion N = (A, C) with antecedent A and consequent C represents a superset
of the transition relation of M. We will denote this set by T(N) (to be read
"transitions of N"). Formally, it is given by T(N) = A x CUA x UM. This reflects
the intended meaning of an assertion: that when the system is in a configuration
within set A, it must next be in a configuration within set C, but if the system
starts in a configuration outside A, the assertion imposes no restriction on the
configuration it will next be in. This is the meaning of a single assertion.

Let i index the set of assertions. The meaning of a set of assertions is simply
the intersection of the meaning of each of its members, fi T(N1 ).

3.4 Syntax of a specification language

This section defines the full syntax of SMAL, our specification language for writing
assertions. (The processor specification in Appendix B of this thesis is given in a
very similar notation.)

A specification in SMAL begins with a head, which is followed by its body.
The basic elements of a specification are its type declarations, the definition of its
state variables, and the assertions which define the state transitions. The syntax is
illustrated by a series of figures. The top-level syntax is shown in Figure 3.20. The
language is an extension of the core subset given previously. While it contains no
essential elements that the subset lacks, it includes more of the typical convenient
features found in programming languages, such as function definitions.



3.4. SYNTAX OF A SPECIFICATION LANGUAGE 79

spec hedrteec.atefeasne

header sMLverzion number specification

freshiden t

dependencies string

Figure 3.20: Syntax of specifications and their headers. A specification consists of
several sections. A header declares parameters and gives some identifying infor-
mation. The Spec is the specification. The typeSec is the type-definition section.
The stateDefSec is the state-variable declaration section. The assnSec is the
assertion section. A freshIdent is a "fresh," i.e., unused, identifier.



80 CHAPTER 3. MACHINES AND DECLARATIVE SPECIFICATION

3.4.1 Type declarations

The type declarations give names to types. This makes it convenient to declare
the types of case variables as they are introduced, by referring to type names. The
basic types allowed include words containing different numbers of bits, subranges
of the integers, and enumerations, as in Figure 3.21.

typeSec types

integer range SZExpr to SZExpr

enumeratison freshdent

Figure 3.21: Syntax of type declarations. Words, integers, and explicit enumera-
tion types may be defined. A szExpr is a restricted, size expression.

The set of expressions that can be used in type definitions is restricted, as
shown in Figure 3.22. Only constants, parameters, and a few common functions
are allowed. (A library of functions such as the logarithm function log, and con-
versions between integers and bit strings according to standard encodings, should
be provided by the language implementation.) The restrictions ensure that the
expressions refer to definite values when the specification is instantiated.

Type checking is a powerful tool for quickly finding many of the errors that
are bound to occur in rigorous formal descriptions written by people. Outside
computer science, it goes by many names; for example, in engineering it is often
called "dimensional analysis." Having type declarations makes it possible to intro-
duce case variables freely, yet do some real checking.footnoteOmitting them might
be possible; this would require including a type-inference system [87]. Even with
declarations, it is still necessary to perform some interval arithmetic, and algebraic
constraint propagation during type checking.



3.4. SYNTAX OF A SPECIFICATION LANGUAGE 81

szEXpr szemszTerrn szFact

szFact number

Figure 3.22: Syntax of restricted expressions. Only expressions w)'ich evaluate
to constants, or which depend only on specification parameters, are allowed. A
szTerm is a term of a size expression. A szFactor is a factor of a size expression.
A paramIdent is an identifier denoting a parameter. A ifunIdent is an identifier
denoting an integer-valued function.



82 CHAPTER 3. MACHINES AND DECLARATIVE SPECIFICATION

3.4.2 State variables

State variables define the state space of the machine being defined. State variables
may be either scalar or zrray. Array variables must be indexed by an integer
subrange type. This synta,; is shown in Figure 3.23.

stateDefSec state

SfreshIdent C typeldent c' ypeIdent•

Figure 3.23: Syntax of system state variable section. If a subscript appears, an
array is defined. A typeIdent is an identifier denoting a type.

3.4.3 Assertions

Assertions are the heart of the specification. Global definitions are useful for
keeping them concise, so the syntax in Figure 3.24 allows them to precede the
assertions.

Each assertion consists of two formulas, called the antecedent and the conse-

quent, and joined by a symbol 4. (The J is left implicit and omitted from the
actual syntax.) In this language, the notion of time advancement, inherent in the
idea of a state transition, is implicit in this symbol. An assertion can also have its

own local definitions. In addition, case analysis is possible at the assertion level.
The syntax of an assertion is given in Figure 3.25.

3.4.4 Formulas

Formulas can be constructed from primitives or from other formulas. A primitive
formula always involves exactly one state variable, and at least one expression.
Such a formula denotes the set of states in which the state variable has the value
given by the expression. If the state variable in a primitive formula is an array, the
formula also contains an expression giving the index intc the array, and the formula
denotes the set of states in which the indicated element of the state-variable array
has the indicated value. Formula syntax appears in Figure 3.26.



3.4. SYNTAX OF A SPECIFICATION LANGUAGE 83

assnSec let defn in

Figure 3.24: Syntax of assertion section. A defn is a function or constant definition.

assertion lot defn in

formula H E formula

as assertion

Figure 3.25: Syntax of an assertion. Each assertion may have its own local defini-
tions and case analysis. A bexpr is a Boolean expression.



84 CHAPTER 3. MACHINES AND DECLARATIVE SPECIFICATION

formula TTTforTermC 
!S

formpact ( formula

Figure 3.26: Syntax of a formula. A formTerm is a term of a formula. A formFact
is a factor of a formula. An expr is an expression. A svarIdent is an identifier
denoting a state variable. A bexpr is a Boolean expression.

Conjunction

Formulas can be combined by conjunction, which corresponds to taking the inter-
section of the sets they denote. While disjunction is also possible, it is likely to be
implemented inefficiently"5 in practice.

Case restriction

Formulas can also be built via case restriction. Case restriction takes a formula and
a Boolean condition, and produces a formula that holds when either 1) the Boolean
condition is false, or 2) when the original formula holds. The Boolean condition
must be composed of expressions, relational operators, and logical connectives.
Note, in particular, that state variables cannot appear in the Boolean conditions.

Case restriction corresponds to requiring that a condition hold only in certain
of the cases denoted by the case variables.

"5 Disjunction can be implemented by the 3 quantifier. It introduces a Boolean variable, but
without good context in which to chose its position in the variable ordering of a BDD-based
implementation. This is likely to be inefficient if frequently used. Further discussion of BDDs
and variable ordering will appear in Chapter 7.



3.4. SYNTAX OF A SPECIFICATION LANGUAGE 85

3.4.5 Expressions

Expressions contain case variables, and denote values. They are not strictly fun-
damental to the language, in the sense that specifications could be written without
them, by expanding to eliminate case variables, and giving constant values explic-
itly. Expressions are needed to keep the language concise.

The syntax of an expression varies depending on its type. There are four types
of expressions. Three of them can occur in several general contexts. as shown in
Figure 3.27.

expz - • wExpr

Figure 3.27: Syntax of general expressions. There are three possible kinds. A
wExpr is a word-valued expression. A eExpr is an enumeration-valued expression.
A iExpr is an integer-valued expression.

Boolean expressions, given in Figure 3.28, are the fourth type of expression.
They occur only as guard conditions in case statements, and are built from rela-
tional operators over other expressions.

Expressions denoting words of bits have the most complicated syntax, in Fig-
ure 3.29. The figure looks complicated but it is actually straightforward if read from
top to bottom. A word expression may be parenthesized, given by case analysis or
a constant, given by a binary operator (either concatenation, or a bitwise Boolean
operator) or by a unary operator (negation, or-reduction, and and-reduction).
They may also be variable references, either to new variables declared on-the-spot
with their type), or to existing variables. Finally, they may be given as functions
of other expressions, or as the extraction of a sub-field of a larger word.

Integer expressions, in Figure 3.30, and enumerated expressions, in Figure 3.31,
are straightforward.

3.4.6 Local definitions
In addition to the more fundamental elements described above, it is useful to have

local definitions. Local definitions are not usually necessary when specifying cir-
cuits that just tend to shuffle data around, such as stacks, queues, register files, and
other memories. However, in order to specify circuits that perform computation,



86 CHAPTER 3. MACHINES AND DECLARATIVE SPECIFICATION

bExpr bTerm erbac

bFa c t~p

Figure 3.28: Syntax of Boolean expressions. A bTerm is a term of a Boolean
expression. A bFact is a factor of a Boolean expression.



3.4. SYNTAX OF A SPECIFICATION LANGUAGE 87

wExpr ( wExpr

case bexpr - wExpr

9 binaryConsstan t
SoctalConstant

'- hex~Const~ant:,

SwExpr wExpr

r~den1

Sw~ar~dent ex-r

Figure.3.29: Syntax of word expressions. A wfypeI dent is an identifier denoting

a word type. A wgarIdent is an identifier denoting a case variable of word type.
A wFunIdent is an identifier denoting a function returning a value of word type.



88 CHAPTER 3. MACHINES AND DECLARATIVE SPECIFICATION

iFact number

cas~~e x bxp p-ri~p

ele iExpr}

Sfreshldent i TypeIdent

Si Varldent1

i. araI den t }xp

Figure 3.30: Syntax of integer expressions. An iTerm is a term of an integer
expression. An iFact is a factor of an integer expression. An iTypeldent is an
identifier denoting an integer type. An iVarIdent is an identifier denoting a case
variable of word type. A paramIdent is a parameter. An iFunIdent is an identifier
denoting an integer-valued function.



3.4. SYNTAX OF A SPECIFICATION LANGUAGE 89

eExpr enumIdent

case bexpr _> eExpr

else' - eExpr ]•

Se~arIdent e}p

Figure 3.31: Syntax of enumeration expressions. An enumIdent is an identifier
denoting an enumerated value. An eTypeIdent is an identifier denoting an enu-
merated type. An eFunIdent is an identifier denoting an enumeration-valued
function.



90 CHAPTER :. MACHINES AND DECLARATIVE SPECIFICATION

it is necessary to specify the computation. In such systems. often an operation
will update the values of several state variables according to some computational
result. To keep the specification concise. local definitions are necessary.

Two separate scopes of definitions are convenient. First, constants and func-
tions of global scope must be available to all assertions. Second. some inds, idual
assertions will have need of their own local definitions. Figure 3.32 gives the syntax
for definitions.

defn - freshIdent

w Typeldent • eExpr --

iTypeldent = iExpr

feh n iT~ype 1den t • ixr

Figure 3.32: Syntax of definitions of constants and functions

Definitions of simple values are useful for many things. Properly used, they
provide mnemonic, meaningful symbolic names. For example, in a microprocessor.
they can be used to define names for the operation codes. They can also be used
in assertions to eliminate the repetition of common sub-expressions, to help keep
specifications concise.

Function definitions are also important. For example, in a CISC microproces-



3.4. SYNTAX OF A SPECIFICATION LANGUAGE 91

sor, each addressing mode combination requires its own assertion, but the com-
putation6 performed by the instructions can be abstracted out into a small set of
common functions that the assertions draw upon.



92 CHAPTER 3. MACHINES AND DECLARATIVE SPECIFICATION

3.4.7 Examples

To make the preceding ideas concrete. this section discusses some examples. We
have now seen the latch (that we first saw in section 2.1) several times. A few
more examples illustrate the versatility of the language.

Finite state machine

A language intended to express systems as state machines should certainly be
able to describe state machines that have been given in a more conventional style.
Figure 3.33 is a textbook example of a four-state machine, having four inputs 1247.
front cover].

Figure 3.33: The state machine from the cover of Winkel and Prosser [247]

This state machine is easy to describe in SMAL. The specification is shown in
Figure 3.34. The state names are enumerated, and the inputs are represented as
bits. The state transitions are defined by writing assertions. An assertion can be
written to describe each state transition, as in the first three assertions in the figure.
Alternatively, branches of the transition structure can be coded more compactly
using case analysis. For example. the last assertion in the figure describes all of
the possible paths leaving state S.



3.4. SYNTAX OF A SPECIFICATION LANGUAGE 93

types boxlabels enum P,Q,R,S.
state st boxlabels;

W bit; X bit; Y bit; Z bit.
assertions st=P /\ X= > st=S;

st=P \ X=O \ Y = > st=Q;

st=P /\ X=O /\ Y=O > st=R;
st=Q \ W= b:bit => case (b=l) -> st=R else st=P;

st=R => st=P;

st=S /\ Z=b:bit /\ X=c:bit
-=> case (b=O) - st=S;

else case (c=O) -> st=P;

else st=R.

Figure 3.34: SMAL definition of the state machine from the cover of Winkel and
Prosser [247].

Random-access memory

The goal of SMAL is to describe data-intensive finite-state systems. A simple
data-intensive system, but one which has a large state space, is a memory. We
can specify a memory using SMAL. The specification is parameterized according
to the number of bits in a word, and the number of words that can be addressed.

SMAL version 0.0 specification RAM(bits,words).

The types define the words of data, the addresses, and the set of possible
memory operations. 16

types
dataWord word bits; // Word of data stored.

location integer
range 0 to words - 1; // Index identifying location.

operation
enumeration read, write // Operations memory can perform.

The system variables define the I/O ,_ials of the memory, as well as its state.
The inputs consist of data, address, and command inputs. The sole output is a
data output. The state of the memory is stored in an array.

state

"H6 Here we introduce a comment delimiter of//.



94 CHAPTER ,s. MACHINES AND DECLARATIVE SPECIFICATION

dataIn dataWord; // Data given to memory.
address location; // Location address given to memory.
perform operation; // Command given to memory.
dataOut dataWord; // Data produced by memory.
mem[location] : dataWord // Value is stored in memory.

The assertions define the operations that the memory can perform. First,
writing to the memory should store the provided data.

assert ions

// Must be able to put data in a location.
dataIn=d:dataWord /A, address=i:location /\ perform=write

memr[i=d

Second, reading from the memory should retrieve the stored data. which should
not be destroyed.

// Must be able to read it back out.
mem[i:locationj=d:dataWord /\ address=i /\ perform=read

mem[i]=d /\ output=d

Finally, unaddressed locations should not be corrupted.

// Mustn't perturb idle locations.
mem[i :location3=d:dataWord A\ address=j /\ perform=op:operation

(i != j) => mem[i]=d

This abstract specification of the memory is relatively concise. Similar specifica-
tions can be written for similar memories. For example, a dual-ported memory
can be specified in terms of the pairs of operations applied on each port.

Stack

Another data-intensive system is one of our initial sources of examples, the stack.
As for the RAM, we can parameterize the memory both in the number of iocations,
k, and the number of bits in a word, w.



3.4. SYNTAX OF A SPECIFICATION LANGUAGE 95

SMALversion 0.0 specification stack(k, W).

The types needed by the stack are similar to those for the memory, but we now
need, in addition to a type to represent storage location, a type to represent the
number of items stored on the stack. Since the stack can be empty, there are more
possible counts of items stored on the stack than there are locations in the stack.
This specification of the stack will include an explicit no-op operation.

types
dataWord word w;
location integer range 0 to k-i;
fullness integer range 0 to k;
operation enumeration push, pop, hold

The state of the stack is similar to the state of the memory, but we must keep
track of the number of items stored in the memory.

state
input : dataWord;
perform : operation;
depth fullness;
output dataWord;
stack[:location] : dataWord

The three stack operations can be defined by separate assertions. The "push"
operation places the input on the top of the stack (i.e., location 0 in the storage
array), and pushes stored data down toward the bottom of the stack.

assertions

// Push item onto stack (cannot be full).
case (d:fullness < k)
-> ( depth=d /\ input=v:dataWord

A case (i:location < d) -> stack[i]=u:dataWord
/\ perform(push)

depth=d+l A\ stack[0]=v /\ case (i < d) -> stack[i+l]=u

The "pop" operation places the value from the top of the stack on the output,
and pops stored data up from the bottom of the stack.



96 CHAPTER 3. MACHINES AND DECLARATIVE SPECIFICATION

II Pop item off stack (cannot be empty).
case (d:fullness > 0)
-> ( depth=d /\ stack[O]=v:dataWord

A case (0 < i:iocation < d) -> stdck[i]=u:dataWord
A\ perform(pop)

depth=d-1 A\ output=v A\ case (0 < i < d) -> stack[i-1]=u

The "no-op" operation does not affect any stored data.

// No operation.
depth=d:fullness /\ case (i:location < d) -> stack[i]=u:dataWord

/\ perform(hold)

depth=d A\ case (i < d) -> stack[i]=u

Notice that the specification is careful to exclude cases such as popping an empty
stack. Such a specification allows anything to happen in such unspecified cases.
If it is necessary that a particular stack exhibit a certain desired behavior in such
conditions, that behavior would have to be specified also.

3.5 Related work

3.5.1 Model of computation

Moore machines are a common, established model of computation [185]. The
mnemonic notation used for describing machines (e.g., config for the set of config-
urations) is derived from the notation of Lynch and Tuttle's 10 automata [1651.
(An early attempt to use 10 automata in this research revealed that a simpler
model would suffice.) The notion of treating sequential systems as functions from
sequences is similar to the string-functional semantics of Bronstein [37, 35, 36],
which was further developed by Van Aelten [236, 237]. The idea of using semi-
groups comes from S. Ginsburg [112]. Ginsburg's generalized notion of an abstract
machine is defined in terms of a quasimachine. A quasimachine has inputs and out-
puts which are semigroups. An abstract machine is a quasimachine whose output
semigroup obeys a left cancellation law. In other words, two equivalent compu-
tations cannot be made inequivalent by forgetting something that happened long
ago.

Process algebra is a model of concurrency originated by R. Milner [181, 182,183]
and very widely developed. The fundamental ideas of process algebra are events
(which are either input or outputs), arid agents which make state transitions when



3.5. RELATED WORK 97

events occur. Agents can be composed and the events forming their interaction
can be hidden. Process algebra is well suited for compositional reasoning about
independent agents which communicate (be they gates connected by wires to form
an asynchronous circuit, or processes connected by a computer network to form a
distributed system) but is not particularly suited for reasoning about functional
properties of individual agents. as done in this thesis. Moreover, the work on
abstraction in process algebra is poorly suited to data abstraction; to some pro-
cess algebraicists (e.g., [258]) abstraction is merely the hiding of a set of actions.
G. Milne's CIRCAL [180] is an adaptation of process algebra to circuits.

3.5.2 Specification of hardware and processors

Although Davie [89] maintains that it is counter-intuitive to describe a micropro-
cessor as a state machine, we argue that we can achieve a natural specification if
the state machine is kept implicit in a declarative, assertion-based notation which
describes the instruction set. Boute has advocated declarative description of hard-
ware [29, 28] with a number of varied examples.

There is a large body of work on so-called hardware description languages
(HDLUs), which are languages used to describe hardware. Most of them are imper-
ative programming languages. Eveking [101, 102] has studied the relatior.ship of
conventional HDL's to formal verification. For applications like ours he advocates
the use of the notion of interpretation, taken from mathematical logic, as the way
to relate different levels of design. His basic approach is to axiomatize HDL's,
i.e., to translate constructs of the HDL into statements in the predicate calculus
(which he calls "assertions"). This has been done for several levels of description,
including the register transfer level and the switch level (incorporating strengths
into the value set, after Hayes [131]). Eveking's work has been conducted in the
framework of CONLAN, which is a family of HDL's. Eveking advocates the very
zareful design of HDL's to ensure that the appropriate models can be easily de-
fined. (For example, it is difficult to define synchronous finite-state machines in
VHDL, because VHDL lacks the notion of a clock.)

A slightly different approach was taken by Hunt and his colleagues, who re-
cently developed a HDL embedded within the Boyer-Moore logic [34]. Their lan-
guage is a synchronous HDL-all state is stored in clocked elements. They have
used this language in verifying FM9001, a derivative of Hunt's original FM8501
[239]. Interestingly, they developed a simulator to use in early stages of debugging,
before attempting formal proof. They also developed a simple translator from their
language into a more conventional HDL.

One criticism of their approach-using a specialized prover-based HDL initially,
then translating to more conventional form, in contrast to Eveking's approach of
putting the desired model of hardware first, then translating to logical formulas-is
that it seems less likely to be acceptable to design practice. This point is some-



98 CHAPTER 3. MAICHINES AND DECLARATIVE SPECIFICATION

what moot, however, because contemporary design practice focuses on standard-
ized HDL's such as Verilog and VHDL. Augustin and colleagues have developed
an annotation language for VHDL with which to express verification conditions
[81.

Assertions

Darringer [88] used assertions in his discussion of verifying hardware descriptions
by symbolic execution. Patterson [197] constructed a program verifier and com-
piler for a high-level microcoding language, based on Floyd's method of inductive
assertions [167]. Pitchumani and Stabler [201] extended Floyd's method of induc-
tive assertions to register-transfer programs by treating input signals as arrays,
indexed by time.

State deltas are a notation similar in some ways to assertions. They have been
used to verify microcode, in a theorem-proving context [160, 1681.

Assertions are descriptions, not definitions, of machines. Zave [256] has pointed
out that descriptions are better than definitions, since descriptions can be modified
by conjoining additional descriptions, while definitions must be made once and for
all. Obviously a set of assertions may be extended by addition of new assertions.

3.6 Chapter summary

After establishing a mathematical background, including marked strings, this chap-
ter started by defining an abstract notion of an agent. An agent is a thing having
potentially nondeterministic behavior, and it is modeled as a set-valued function,
where a copy of the stimulus applied to the agent is (implicitly) retained when
examining the agent's response. Then the notion of a machine was introduced.
A machine is an agent whose inputs and outputs are sequences. Two particular
types of machines, Mealy machines and Moore machines, are sequence machines
whose behavior can be determined from a transition relation.

After introducing our model of computation, we introduced our style of spec-
ification by giving a subset of a specification language. We used this subset to
provide a formal semantics for the language, and we saw that specifications in
the language denoted transition relations. We then related the assertions of such
specifications back to the model of computation. Finally, we concluded with the
syntax of the full language, and examples showing how a finite-state machine, a
RAM, and a stack could all be defined in a declarative way.

Specifications are the high level of our verification methodology. We now turn
to the low level. Ultimately, of course, we will relate the two.



Chapter 4

Simulation and machines

This chapter discusses switch-level simulation of digital MOS circuits and its rela-
tion to abstract machines.

The first section describes the model of realizations. Our realizations are switch-
level circuits. Each such circuit can be thought of as defining a Moore machine.

We have chosen the switch level because of previous experience modeling cir-
cuits at this level. Use of the switch level model is not a prerequisite of the
methodology. Any simulation model could be used, provided that the definition of
a Moore machine from excitation functions, given in section 4.2, applies.

There are four requirements that a circuit simulation model must meet in order
for our methodology (together with trajectory evaluation) to be applicable to it.
The first is that it must be a model in which designs are created. Though this
seems an obvious requirement for any approach to verification, it should be re-
peated because not all models are suitable. For example, verification based on the
parsing of circuit graphs according to a graph grammar breaks down when con-
fronted with non-grammatical circuits, and verification tightly coupled to a design
hierarchy breaks down if the actual hierarchy, due to implementation constraints,
must diverge from the clean, conceptual hierarchy with respect to which verifica-
tion is easiest. For example, the geometrical hierarchy of a chip design is likely
to include busses passing through the middle of a data path element such as an
adder, where as conceptually the busses are external to the data path element.

The other three requirements are that the model be monotonic over an "infor-
mation content" ordering, that it be easily extensible from a value domain to a
symbolic domain, and that it be conservative.

A model that operates over a partially ordered set of state values, where the
order represents information content, can be quite powerful if the values that
carry little information are represented cheaply. Analysis of some "interesting"
part of the circuit can proceed, while little effort is expended in dealing with
"uninteresting" parts, by maintaining little information about signal values in the
"Cuninteresting" area. The region of interest can be shifted about the system until

99



100 CHAPTER 4. SIMULATION AND MACHINES

0 a'

a. Conventional b. Symbolic

c. Ternary d. Ternary

a 1, ifa=O
X X, otherwise

e. Symbolic ternary

Figure 4.1: Ternary symbolic simulation of a NAND gate.

the entire circuit has been considered. In order for such reasoning to be sound,
the model must be monotonic-adding information in one place must not cause
information to be lost in another, and vice versa.

The techniques described in this thesis ultimately depend on symbolic simula-
tion,so the simulation model to be used must be easily extensible to symbolic form.
In practice this is achieved by using BDDs to represent Boolean functions, and by
encoding domains of more than 2 values in terms of several encoding bits. An
encoding must be chosen that makes it possible to show that there is monotonic-
ity over the information-content ordering, and which allows the low-information
values to be represented cheaply' (e.g., by giving all the encoding bits the same
value).

Symbolic simulation allows the analysis of many cases at once. Consider the
NAND gate shown in Figure 4.1. Conventional simulation is illustrated in part a.
Simulator state consists of logic levels. Pure symbolic simulation is illustrated in
part b. Here simulator state consists of functions which yield logic levels. The
inputs of the gates are the functions f(a, b) = a and g(a, b) = b, and its output is
the function h(a, b) = a7-.b. Partially ordered simulation is illustrated in parts c
and d. Here an X value 2 represents the absence of information. In part c we know
that if one input is 0, the result will be 1 even if the other input is unknown. In
part d we see that if one input is 1 and the other is unknown, the result will be
unknown also.

'otherwise, "throwing away" information would yield no performance benefit
2 We emphasize that X is a value, an element of the ternary set { 0, 1, X), and not a variable.



4.1. SWITCH-LEVEL MODEL 101

It is when partially ordered simulation is combined with symbolic simulation
that even more interesting results can be achieved. For example, part e shows that
when one input is unknown and the other is the function f(a) = a, the result is
the symbolic case analysis

=({)1, ifa =0
X, otherwise

which captures the information of both part c and part d in a single pattern.
Finally, a model for verification must be conservative. That is, while it may

allow errors that would cause us to reject a good circuit, it must not allow errors
that would cause a bad circuit to be accepted. The first is merely most undesirable,
while the latter is quite catastrophic. For example, if the output in part c were
X, this would be a conservative error, but if the output in part d were 1, it would
not.

We discuss the switch level in some detail in this chapter as an aid to under-
standing the microprocessor verification case study found in Chapter 9. The switch
level is often very appropriate for modeling MOS circuits, since they are designed
at that level. For example, the stack cell of Figure 2.9 can be analyzed only at the
switch level (or lower).

4.1 Switch-level model

Here we describe the switch-level model. We supply little detail, using informal
terms; this discussion is intended as orientation. For a rigorous presentation of the
switch-level model see Bryant [39, 49].

A switch-level model is distinguished from a linear circuit models: each tran-
sistor is modeled as a switch that can be on or off. Physically a FET may exhibit
a range of conductances, but we model this abstractly, as if we were uncertain of
the state of the switch.

Switch-level modeling is appropriate for most digital circuits constructed from
MOSFETs (metal-oxide-semiconductor field-effect transistors). The term MOS-
FET is generally retained for historical reasons, although contemporary silicon
designs use polycrystaline semiconductor rather than metal gates, so their tran-
sistors are more properly called IGFETs (insulated-gate field-effect transistors)
[174, 231]. We use the term "FET" or "transistor" to refer to these devices.

A FET is a three-terminal' device, and acts like a voltage-controlled switch.
In simplified terms, it consists of two terminals, called the source and the drain
(which are often symmetric), on either side of a MOS capacitor. Depending on the
charge on the MOS capacitor, a conducting path called the channel can sometimes

'Actually there is a fourth terminal, called the substrate, but it is unimportant for our
purposes.



102 CHAPTER 4. SIMULATION AND MACHINES

Gate
Source Drain

n-type n-type p-type
enhancment depletion enhancment

Figure 4.2: Transistor symbols

exist between the source and drain. The distinguished third terminal, called the
gate-one of the terminals 4 of the MOS capacitor-is electrically isolated from
the other two terminals, and the voltage applied there controls the conductance
through the channel.

Figure 4.2 shows the symbols used for three different kinds of transistors. Two
particular types of transistors are called nFETs and pFETs. They can be thought
of as turning "on" exactly when their gates are at a high or a low voltage, respec-
tively.

Switch-level models distinguish three characteristics of a circuit: its nodes, its
FETs, and its sources of electrical charge.

Switching theory has a rich history, but switch-level models for MOS circuits
are comparatively new. They were conceived by Bryant [53], while Hayes indepen-
dently formulated a similar model 1131]. In Bryant's original formulation, FETs are
modeled as voltage controlled switches. Nodes are divided into three sets: storage
nodes, pulled-up nodes, and input nodes. Storage nodes are modeled as sources
of arbitrary but bounded amounts of charge. Special pulled-up nodes appear at
critical points in ratAoed circuits, e.g., the output of an nMOS logic gate. They
supply arbitrary unbounded charge, but only if charge is not also being supplied by
an input node. Ternary values from the ternary set { 0, 1, X } represent voltages:
0 represents a low voltage (e.g., 0 volts), 1 a high voltage (e.g, 5 volts or 3.3 volts),
and X an unknown or intermediate voltage. Sources of charge are modeled by
input nodes, which can supply arbitrary unbounded amounts of charge, at a volt-
age represented by any of the three logic levels. Stated differently, an input node
models an ideal voltage source whose voltage corresponds to the node's present
ternary value. This aspect is also present in later refined versions of the switch
level model. We will call it the voltage source assumption.

4The substrate is the other terminal of the MOS capacitor.



4.1. SWITCH-LEVEL MODEL 103

This model has several interesting consequences. Since input nodes supply
unbounded charge, establishing a conducting path from an input node to any
internal node always causes the ternary value of the input node to override any
value stored on the internal node.

Since node capacitances are considered be unknown, when two nodes capaci-
tively storing different logic level become connected, both nodes must be set to X.
This models the fact that when two capacitors of unknown capacitance, charged to
different voltages, are connected together, either might supply an arbitrary amount
of charge to the other.

Later refinements to switch-level models introduced two ordered, discrete sets:
transistor strengths, antu node sizes. Allowing varied transistor strengths allows
a conducting path through a strong transistor to override a path through a weak
one. This allows pull-up nodes to be eliminated, and replaced by a storage node
together with a connection to the power supply through a weak transistor that
always conducts. The physical phenomenon modeled is the voltage divider (in the
limit as the conductance ratio of voltage divider approaches infinity). We will call
this aspect of the refined switch level model the voltage divider assumption.

The effect of allowing varied node sizes is to allow the ternary value represent-
ing the charge stored on a large node to override the value representing the charge
stored on a smaller node. This makes propagation of X values less pessimistic.
For example, it allows modeling of structures such as a CMOS logic gate con-
structed in a precharged, pseudo-nMOS style: the large, precharged output node
will sometimes share charge with a tiny, discharged, isolated internal node of the
pull-down network, but this will not affect the output node's value. The physical
phenomenon modeled is conservation of electrical charge (Kirchoff's current law),
in the limit as the capacitance ratio approaches infinity [39]. We will call this
aspect the charge sharing assumption.

These aspects of the switch-level model are firmly grounded in circuit theory,
abstracted by the limit operations.

The switch level model is given a unifying mathematical framework by using a
single ordering, where input nodes are given a size greater than transistor strengths,
which are in turn greater than storage node sizes. The effect of a network state
can then be computed by starting at the highest level and calculating the network
response at each level, in turn, before proceeding to the next lower level. The
effects calculated at each level do not override effects calculated at a higher level.

This algorithm yields the desired results:

e Since input nodes have the highest strength, and values at lower strengths
cannot override values established at higher strengths, input nodes remain
at the logic level established by the circuit's environment. This agrees with
the voltage source assumption.

* Conducting paths to a storage node through strong transistors from input



104 CHAPTER 4. SIMULATION AND MACHINES

nodes establish relatively strong values. Paths through weaker transistors
and paths from other storage nodes cannot override such values. This agrees
with the voltage divider assumption, together with the voltage source as-
sumption.

s Values established by paths from small storage nodes cannot override values
established by paths from larger storage nodes. (Note that a path may have
a length of zero, i.e., each node comprises such a path.) This agrees with the
charge sharing assumption.

Numerous variations of switch level models and simulators have been proposed
and implemented; Bryant [44] surveys them. The essential aspects of a switch level
model are 1) that it model transistors as switches, and 2) that it operate over at
least a three-valued domain. The verification methodology described elsewhere in
this thesis further requires a symbolic representation of the model.

4.1.1 Aspects of switch-level models

An important concept in efficient switch-level modeling is that of a transistor
group. A transistor group is a set of storage nodes that can share charge, together
with the transistors connecting them. More formally: construct the channel graph,
a graph with a vertex for each circuit node and an edge for the channel of each
transistor. Each connected component of the graph corresponds to a transistor
group. Within a transistor group system response can be difficult to analyze, since
switches are inherently symmetric and allow charge to flow in both directions. The
interaction between ýifferent transistor groups is simpler. Each group is affected
only by its input nodes and the gates of its transistors; information flows across this
boundary in only one direction. Good switch-level simulation algorithms exploit
this unidirectional flow to improve efficiency.

Another aspect of circuit modeling is delay. When a transistor switches on, it
conducts only a finite current, due to a phenomenon known as saturation. More-
over, the switching of the transistor entails the movement of charge in the MOS
capacitor. Thus, a certain time is required before charge is transferred between
the source and drain to equalize voltages. There are several ways to model this
delay. A simple approach is to consider the transistor as actually switching not
when its gate voltage changes, but only after certain delay. Another simplification
is to assume that the delays associated with all transistors are the same.

These simplifications lead to the the unit-delay model: the transistor's switch-
ing delay is used as the unit of time. Given the logic level at each inputs and
storage node, new logic levels are computed for each storage node. As levels are
computed, they are stored; at this point the algorithm is computing the effects
of all logic levels on transistor conductances. After the new logic level has been



4.1. SWITCH-LEVEL MODEL 105

computed at each storage no,' , the switching delay occurs. Then all storage nodes
are updated with the new logic levels just computed. The simulation of one unit
time is now complete. A simple extension is to say that some transistors switch
very quickly, giving them a zero delay.

An additional timing assumption is the phase-level timing assumption. This
relates the timing of the "ircuit's internal operation to the timing of the circuit's
environment. It is simplest to assume that after one or more inputs to the circuit
change (simultaneously), sufficient time elapses for the circuit to respond-to reach
a stable state, This seems a reasonable assumption for synchronous circuits: some
inputs may change, and then a clock edge will occur, after which the circuit will
have sufficient time to stabilize. Unfortunately it is also unrealistic: some circuits
oscillate. To model this. we impose a simple limit. After a certain number of
time units (called the step limit) as nodes change they can be set to X instead
of the computed logic level, with this process repeated until the network becomes
stable. (In the worst case all storage nodes would be set to X before stability is
reached. but stability is guaranteed to occur.) Although this is not a useful model
for circuits such as clock generators that are designed to oscillate, it does model
unintended oscillation conservatively. The period of time the circuit is allowed to
respond to input changes is called a phase.

More sophisticated switch-level timing models are also possible (210, 211]. The
verifier used in the case study was not based upon them, though such an extension
would be possible.

Two properties of the switch-level model are especially critical for verification:
the model is monotone over an "information-content" ordering, and it is conser-
vative. That the model is conservative means that if the model predicts that a
circuit will produce an output logic level of 0 or 1, then the circuit will indeed
produce this output, rather than some intermediate voltage. A model that is not
conservative is of questionable value for verification. That the model is monotone
means that if it predicts that, the circuit, with some inputs set to the logic level of
X, produces an output logic level of 0 or 1, then if an input that was X is changed,
the outputs that are 0 or 1 do not change. Clearly a model that is not monotone is
not conservative. We have only argued that the switch-level model is conservative,
but it is easy to prove that the switch-level model used in the Cosmos symbolic
simulator [55) is monotone.

4.1.2 Symbolic analysis

Several particular details of the switch-level model used in this research are worth
noting. In Lhe COSMOS [55] approach to switch-level simulation, the key step is
an efficient [51] symbolic Boolean analysis [43J of the switch-level network. The

"-5 This is known as the fundamental-mode assumption [1321.



106 CHAPTER 4. SIMULATION AND MACHINES

problem of determining the response of a switch-level network is formulated in
terms of finding paths through the channel graph. The analyzer derives Boolean
expressions indicating the conditions under which conducting paths are possibly
or definitely formed, and under which one path is blocked by another. Using an
encoding representing each logic level by a pair of Boolean values, it forms these
expressions into systems of Boolean equations at each strength level. Finally. it
solves the equations at each level in turn, using Gaussian elimination. This yields
a set of Boolean expressions that capture the network response in full generality.
By choosing the proper state encoding. these Boolean expressions are monotone
[43].

4.1.3 Simulation

The Boolean expressions produced by symbolic analysis comprise a symbolic rep-
resentation of the network's response. in one ,mit time, to its current state and
inputs. Given such a representation. the response of a circuit in a particular state
to particular a phase is easy to compute: iterate. updating circuit state by eval-
uating the Boolean expressions, until the state reaches a fixpoint. If the step
limit is reached before a fixpoint state occurs. oscillating nodes are set to the logic
level X, until a fixpoint is reached. The particular state encoding chosen and the
monotonicity of the Boolean expressions guarantee that the phase response of the
simulator is monotone.

4.1.4 Symbolic simulation

The result of symbolic analysis is attractive due to the ease of constructing a
simulator. This ease may be used to good advantage by constructing a symbolic
simulator. A conventional simulator, as outlined above, represents the logic levels
on input and storage nodes by pairs of bits encoding ternary values. A symbolic
simulator extends this by replacing the bits with a representation of arbitrary
Boolean functions over some set of variables. Pairs of these functions then encode
ternary-valued functions of the set of Boolean variables. In order to test for the fix-
point in computing the phase response of the circuit, it is necessary to test Boolean
equivalence. Boolean satisfiability, the canonical NP-complete problem. is trivially
reducible to Boolean equivalence. Thus, such a simulator must exhibit poor per-
formance for some class of inputs. In practice symbolic switch-level simulation
achieves reasonable performance for many circuits.

4.1.5 Accuracy and precision

It is useful to be careful in distinguishing two terms that are sometimes used
carelessly: accuracy and precision. Accuracy is defined as "degree of conformity



4.2. THE MOORE MACHINE DEFINED BY A CIRCUIT 107

of a measure to a standard or a true value" while precision denotes "the degree of
refinement with which an operation is performed or a measurement stated." For
formal verification, it may be quite useful to trade off precision for some other
benefit-faster execution, for example. An imprecise model says little about the
behavior of a system. Reducing the precision of a model simply makes the model
more conservative. At worst, an imprecise model gives answers that obviously
cannot be used because they hold too little information. As a more concrete
example, the introduction of X values in oscillating networks, using the step limit.
is an example of decreasing the precision of simulation. On the other hand, trading
away accuracy is a dangerous game. An inaccurate model is one that yields answers
that do not conform to the "true value" but whose incorrectness is not apparent.
Bluntly, it yields wrong answers. Too often the term "accuracy" is used as a
synonym for "precision."

Models for verification must be accurate, but sometimes they may not need to
be precise.

4.2 The Moore machine defined by a circuit

A switch-level circuit can be though of as defining a nondeterministic machine.
The machine states are the circuit states that have no X values, and the circuit
states with X values represent sets of machine states. For example, the switch-level
state X of a circuit having only one node represents the set { 0, 1 } of both possible
machine states. Thus, nondeterminism is represented by ternary X values. Intu-
itively, tis often means that some part of the circuit is not being driven, because
it is uninteresting-it shouldn't affect another part (one that we are interested in).

This differs in character from nondeterminism that reflects an actual choice-
such as decision of the order in which two signals have arrived.

Our ultimate goal is to verify circuits, but our theory is primarily in terms of
abstract machines rather than circuits. Here we now connect our abstraction to
a lower-level abstraction, commonly used in reasoning about MOS circuits: the
switch-level simulation model we have just examined.

Let T denote the ternary set, namely {0, 1, X }, with a partial order relation
Et given by 0 Qt X and 1 Et X. Intuitively, E is an uncertainty ordering. Let B
denote the binary subset of '7", namely { 0, 1 }.

A switch-level circuit R is a pair (NR, YR). It consists of a finite set NR of
distinct elements, called nodes, and an excitation function YR: TI7-NRI -+ TIJNRI.

The nodes are numbered, and we identify them with subscripts. Thus N =
{ ni,n 2 ,... , nNRI }. We require that the excitation function YR be monotone with
respect to the point-wise extension of Qt. This is a common requirement of a sim-
ulation model; in particular, it is satisfied by the switch-level simulator COSMOS
[551 as a consequence of the choice of primitive operations and state encoding.



i08 CHAPTER 4. SIMULATION AND MACHINES

The input nodes are those nodes whose value is not determined by the cir-
cuit. Thus the set of input nodes can be given as INR = { i E NR I Vt E
TIN RI (YR(t))i = X }. The remaining nodes form the set of state nodes SNR. The
output nodes ONR are a subset of the state nodes. Let INR = { nl,..., -I INRI } and
SNR = {nlINR +1.- .. , nINRI } and ONR = { nflR11NR I,--'....gNRI ). This entails
no loss of generality: one could always permute nodes.

Then the signature of the realization machine is defined by letting inp(R) =
5IINRI and out(R) = BIONRI states(R) = BIsNRI. Then let config(R) = inp(R) x

states(R) x out(R), so config(R) is a proper subset of TJ-'IRI+IONRI. Thus, Q
defined on TINRl+l'IRI can also be defined between an element of T-INRI+I°NRI and
an element of config(R). Note that as we required in section 3.2.2 (p. 64). there
is a projection 1[ such that Iconfig(R) = inp(R). We can define E, between
TbARI and config(R) by identifying redundant elements of TINRJI+IONR 1. i.e., those
corresponding to out(R), with the associated elements corresponding to elements
of states(R).

Using this ordering, we can complete the definition of the realization machine.
Its transition relation steps(R) is defined to be the set:

{((ia,sa,oa),(icsC,oC)) I 3s E BIAR.(i•,saoa) = sA (i0,s',o ) C(, -,(s)}

We usually let R denote the machine rather than the switch-level circuit.
We define the outputs nodes to be a subset of the state nodes to ensure that

the excitation function can depend only on input nodes and state nodes (i.e., that
it cannot depend on outputs which are not states).

Proposition 8 The machine R defined by a switch-level circuit as in the con-
struction above is a Moore machine.

Proof: Assume that (va. vc) E steps(R) and lrVc = Hri and show that (v,,. &c) E
steps(R). Since (va,vc) E steps(R), let (ia,Sa.,oa) = v. and (i,,se,oc) = v.. Then
there is an s E TI11RI such that (ia, Sa, Oa) ýýt s and (i, c,, oc) Et YR(s).

Let &, = (i, ai,,6). Since IIrv, = IV,, sc = ý, and o, = 6,. Finally, since YR
yields X values on input nodes, whatever i, may be, (i], SC, oC) EQ YR(s). Hence
(va, c) E steps(R). U

4.3 Related work

Many models used in attempting formal reasoning at the switch level (e.g., [257])
have shortcomings, and are unable to model relatively common MOS structures.
A notable exception is the model used by Weise's system Silica Pithicus [241],
which is quite detailed. It is successful where others fail because it does not



4.4. CHAPTER SUMMARY 109

simply describe the behavior of a circuit: it also produces a set of constraints upon
the environment in which the circuit operates. These constraints become proof
obligations in hierarchical reasoning.

The notion of an excitation function used here is quite close to that used by
Seger and Brzozowski [59].

Kam and Subrahmanyam [151] have developed a technique for showing that
small switch-level circuits implement abstract machines. They use anamos [55] to
produce a set of network excitation functions, and derive from them a transition re-
lation which they represent symbolically in the style of Coudert [84]. This relation
is transformed by means of a fixpoint calculation, and an existential quantification
to hide the clock signals, to get a cycle-to-cycle transition relation. The fixpoint
calculation converges if the circuit does not oscillate.

This strategy of computing the fixed point first and then finding the ultimnat
transition relation seems a bit cumbersome. The same results should be obtainable
by simply evaluating a symbolic simulation over one clock cycle, yielding directly
the next-state function, and converting that to a relation. This incorporates the
clocking information earlier in the analysis, hopefully reducing the difficulty of anal-
ysis. This becomes, essentially, the method of Bose and Fisher [27]. Performance
should be better as well, because the simplifying circuit constraint of non-overlap
of clocks would be incorporated into the symbolic representation much earlier.

Moreover, with symbolic simulation there is a chance of extracting useful infor-
rmation from oscillating circuits. First, if a circuit oscillates only when the clock-
ing constraints are disobeyed, incorporating the clocking earlier obviously helps.
Second, if the circuit oscillates otherwise, the fixpoint calculation that occurs dur-
ing simulation will not converge. But if it exceeds a threshold number of steps,
switching to a monotonic conservative approximation of the excitation functions
will guarantee convergence. This allows checking properties of (a conservative ap-
proximation to) an oscillating circuit. Such circuits might sometimes be acceptable
circuit, e.g., if the oscillation were in an unreachable component of its transition
graph.

This conjecture-that Kam's technique is essentially equivalent to that sketched
above-could be evaluated both experimentally and also by attempting a proof.
Proving equivalence would be immediately useful, while proving a discrepancy
would imply that either symbolic simulabion or the state-machine extraction was
wrong in some subtle way.

4.4 Chapter summary

This chapter has discussed properties of a model of digital MOS transistor cir-
cuits suitable for verification. The particular model discussed has been the switch
level, which was chosen for historical reasons. An introductory explanation of the



110 CHAPTER 4. SIMULATION AND MACHINES

switch-level model, and its development, was given. In order to apply the ver-
ification methodology and checking algorithm that we will be discussing in this
thesis, a circuit model must have certain characteristics. It must operate over
a partially ordered domain, be monotonic over this order, and symbolic. It must
also be conservative--precise, but not necessarily accurate-in other words, it must
answer "I don't known" rather than give a wrong answer. We discussed these char-
acteristics and the way in which the switch-level model meets them, and concluded
by formally defining the Moore machine described by a simulation model.



Chapter 5

Implementation

This chapter introduces the idea of mappings between agents in order to discuss a
formal relationship between abstract agents, called implementation.

5.1 Mappings between agents

If M and N are agents, a mapping I from M to N, written I: M -- N, consists of
several parts, which map the various parts of the signature of M into corresponding
parts of the signature' of N. Thus, it consists of an input mapping Iin,: ins(M) -+
ins(N), and a behavior mapping Ibeh: beh(M) -+ beh(N). Of course Ibeh and 'ins

must be consistent with the input projection function I'. We will also sometimes
wish to consider a specification agent operating on a subset Ls g inp(S) of its
possible inputs. Often we will be particularly concerned with mappings where 'ins

is surjective. (Note that if Ii,, is surjective from some CS g ins(S) then it is
surjective from ins(S).) We omit the subscripts ins and beh from I when they are
clear from context.

5.2 Implementation between agents

The central property we are concerned with is implementation. First we discuss it
informally, before giving the formal definition.

5.2.1 Informal motivation

To say that one machine implements another is to say that the first does what
the second does. If the two machines are interchangeable, this is not difficult to
define. However, we are concerned with machines at different levels of abstraction.

'the signature of an agent was defined on page 64

111



112 CHAPTER 5. IMPLEMENTATION

The second machine-the specification machine-should be more abstract, so that
we can reason about it in a concise way. But the first machine-the realization
machine-should be more concrete, so that we can build it. Thus the machines,
in general, will not be interchangeable.

The precise degree of difference in abstraction and, in fact, even its direc-
tion is not important. The realization could indeed be more abstract than the
specification2 . The important thing is that the neither machine can replace the
other. Some sort of a nondeterministic mapping is needed to move from one to the
other.

Numerous definitions of implementation relations have been proposed. The one
we choose has a simple intuitive definition. We take two nondeterministic agents,

Scalled the specification and the realization. We say that the realization implements
the specification if, for any stimulus on which the specification produces a response,
the response of the realization to this stimulus is always one of the responses that
we could see from the specification.

Such a definition lacks the mapping from specification to realization. This is
easy to remedy. Note that the mapping could be nondeterministic. For any re-
sponse of the specification, there is a set of corresponding responses of the realiza-
tion. Thus we require that the realization produce any response that corresponds
to some response of the specification. Also note that for any stimulus to the spec-
ification, there is a set of corresponding stimuli to the realization. Thus we require
that the realization work for any such stimulus that the mapping might pick.

Such a definition must be carefully considered, for it allows trivial implementa-
tions in two ways. First, it allows a mapping that never maps any stimulus. Then
any requirement that some property hold for all mapped inputs will be trivially
true. Second, it allows a mapping that maps all responses together. Then the
requirement, that every response of the realization be one that is allowed by the
specification, is trivially true. We must address these possible trivialities in our
notion of implementation.

Implementation should ultimately be defined as an I/O relationship. Ulti-
mately, it is through the behavior of a system that we must decide whether or
not it is acceptable. Recall the example of I/O behavior for an abstract stack,
Figure 2.17, (p. 39) and for a stack circuit, Figure 2.18. Our definition of imple-
mentation should be a relation between sets of objects like these.

5.2.2 Direction of the mapping

The above characterization of implementation in the presence of a mapping is
certainly not the only possible one. A more general framework would be in terms
of a relation rather than a directed mapping. (The set-valued mappings that we

2 the only new question then raised would be of sanity



5.2. IMPLEMENTATION BETWEEN AGENTS 113

chose to use are mathematically equivalent to relations.) The mapping could also
be given in the opposite direction. Since such mappings from the concrete to
the abstract yield abstractions, they are often called abstraction functions. (In
an unfortunately confusing choice of terminology, they are also sometimes called
implementation functions.) There is no clear mathematical reason to choose one
direction over another.

In the absence of a fundamental or mathematical reason for preferring one
treatment, we are free to adopt a pragmatic reason. We choose to map from the
abstract system to the concrete system because this is the direction of mapping
that we find easiest to work with.

Mappings from the abstract system to the concrete system are easy to work
with for three main reasons. The first is that they are like macros. In the genesis
of this work, mappings were originally conceived of as macros. But waving hands
and saying "they're just macros" is unsatisfying. If such a formulation is put
in practice, a textual specification may look clean and straightforward-but the
actual specification is not the text! Instead, the actual specification is the macro-
expansion of the text, not the text itself. Reasoning, even informally,3 about the
text as if it were the specification is then a dangerous undertaking. Although
our mappings have some of the role of macros, they are treated formally, so that
the "un-expanded" specification is really the specification to which the formal
relationship is established. Thus, reasoning about the abstract specification may
be conducted with confidence.

The second reason for mapping "downward" is that mapping from the abstract
to the concrete maps from simpler things to more complicated ones. This lets us try
to impose order rather than try to discern it from chaos. It becomes particularly
important because our models are switch-level circuits, where any circuit node can
be modeled as a state variable. Most of the nodes in a circuit store unimportant
values. That is, the fact that they store values at all is a side-effect of the way
in which they are designed, rather than a fundamental result on which the circuit
operation depends. But by allowing them to store values, we admit a uniform
treatment of circuit nodes in the system model. This makes a mapping in the
opposite direction prone to two problems. First, it requires consideration of many
unimportant state variables, complicating the analysis. Second, if we undertake to
reduce the number of state variables by considering only the important ones, this
requires that we first identify them through a detailed analysis at the circuit level.
Mapping in the other direction avoids this difficulty.

Since, by mapping downward, there are a limited number of Boolean variables,
those in the specification, and presumably their role is well-understood, this allows

'Even if the macros themselves have precise definitions, it will still be tempting to reason
about the un-expanded specification, since it is easy to believe that you "know what the macros
mean."



114 CHAPTER 5. IMPLEMENTATION

Figure 5.1: Dynamic latch. Meaningful state is stored on node s, but nodes o and
f could potentially also be storage nodes.

the users of a verifier based on these techniques to play a large role in choosing an
order for the variables used in constructing BDDs. The informal observation that
manually chosen variable orders often work well is a part of the folklore surrounding
BDDs, and Fujita and his colleagues have reported on experiments confirming this
[107].

Finally, such mappings are sufficiently general that they can, at least concep-
tually, express any relation that could be expressed some other way.

Nonetheless, the direction of our mapping is still in several ways a convention
rather than an absolute requirement, and we expect that results similar to some
of ours could be obtained if the direction of the mapping were reversed in the
formalism.

For example, an algorithm has been suggested by Clarke [761 for checking
Hoare-logic assertions on single state transitions using quantified Boolean formulas
(QBF). In one sense it is less general than the methodology developed here because
it deals only with transitions, not with overlapped operation, but it is more general
than trajectory evaluation in the sense that its underlying logic is more expressive.
Failure to account for overlap would prohibit this algorithm from being used on
a design such as the Hector microprocessor, studied in Chapter 9, but there are
other drawbacks as well.

The QBF-based technique requires that the transition function for the system
be evaluated for a general state. This can be prohibitively expensive, because of
two reasons. First, there are many bits that, in a low-level system model, while they
can store state, do not store state. For example, consider the dynamic latch shown
in Figure 5.1. Excluding the input i, it contains 3 nodes which can potentially
store state: the actual storage node s, the inverted output o, and the output of the
feedback amplifier, f. This threefold increase in the number of state bits-cubing
the number of state,;-is but the first step. Note that this triples the number of
BDD variables required to represent a general state. Moreover, simulating from
a fully symbolic representation of a state requires the simultaneous evaluation



5.2. IMPLEMENTATION BETWEEN AGENTS 115

of all aspects of circuit operation at once-for example, all the instructions in
a processor's instruction set, at once. This may not be possible even when the
evaluation of one aspect at a time is tractable.

While a QBF-based method of checking assertions may be useful for verifying
some class of systems, it not suitable for microprocessors when reasoning at a
detailed level.

5.2.3 Formal definition of implementation

We define implementation formally in terms of three component properties. The
first, obedience, requires that the realization behave well. The second, conformity,
requires that the input mapping be nontrivial. The last, distinction, requires that
the result mapping be nontrivial.4

Formally, let S and R be agents, and I: S -ý R be a total mapping. Let
Ls C ins(S).

Definition 17 (Obedience) Agent R obeys S on Cs under I if for every is E Cs,
for every iR E I(is), and every vR E R(iR), there exists a vs E S(is) such that
VR E I(vs).

In other words, if we encode a specification input in any possible way, everything
that the circuit can produce from that input must be something that could be
obtained by encoding a result that the specification could have produced from the
original input. In such conditions we refer to I as an obedience function. When
Ls is equal to ins(S) we omit mention of Cs, for the definition then holds for any
Cs C ins(S).

Definition 18 (Conformity) The set Ls conforms under mapping I1,, if for ev-
ery is E Ls there is at least one iR E I(is).

In other words, we must be able to encode every specification input to produce a
circuit input.

Definition 19 (Distinction) The mapping I is distinct for beh(S) if for every
distinct vs and vs (i.e., vs 0 Os), in beh(S) the sets I(vs) and I(Os) are disjoint.

In other words, the encoding must always allow us to tell different things apart.
Note that this does not require the specification to be a reduced machine.

Definition 20 (Implementation) Agent R implements S on Cs under I if R
obeys S on Ls under I and I-s is conforms under mapping Iins and Ibeh is distinct
for beh(S).

4As a mnemonic aid, imagine a fictitious military school on Cape Cod, whose motto might
be "_Qonformity, Obedience, Distinction."



116 CHAPTER 5. IMPLEMENTATION

A

=-- Out

Figure 5.2: Bad implementation of exclusive-OR

When this property holds, we refer to I as an implementation mapping.5

Obedience

This is the property that we often refer to when we say informally that one machine
implements another. In this sense it is the key property. Most of the effort goes
to show it.

Conformity

This is the requirement that the input value iR in Definition 17 always exists. At
first glance the presence or absence of such a property of a mapping may almost
seem to be so obvious that there is no need to check it. However, our desired
application of this theory is to circuit verification. There are subtleties involved in
mapping states onto circuits.

Suppose we wish to specify an exclusive-OR gate. We might write this as the
assertion A = a A B = b •4 Out = a E b.

Suppose we did not require conformity-that we be able to map all inputs.
Then the circuit shown in Figure 5.2 would meet our exclusive-OR specification.

This circuit is obviously not an exclusive-OR gate. Since its output is grounded,
obviously it computes nothing at all. Since A and B are actually the same node,
we can map the specification states described by A = 0, B = 0 or A = 1, B = 1
onto the circuit, and for each of these, the desired output is 0-which the circuit
produces, since the output is grounded. However, we cannot map the specification
states described by A = 1, B = 0 or A = 0, B = 1 onto the circuit, since the
input node (which goes by the two names A and B) cannot be both high and
low. Consequently, in these cases, the antecedent of the implication inherent in
the assertion will be false, so the entire implementation will be true. Thus, for all
cases, the assertion is valid.

SUnfortunately, almost every possible term (except perhaps "downward mapping") has been
used by someone to refer to a mapping in the opposite (upward) direction, i.e., from the realization
to the specification. For example, Lamport has used both "implementation mapping" [157, p. 103]
and "refinement mapping" [1] to refer to mappings in the opposite direction from ours.



5.2. IMPLEMENTATION BETWEEN AGENTS 117

A Out

a. Circuit b. Specification

Figure 5.3: Bad implementation of a serial AND gate. a. The node Q, which is
supposed to store state, is grounded. b. State diagram of specification.

Clearly something is amiss here. The problem is that we cannot map all speci-
fication inputs onto the circuit. If we impose the conformity requirement, however,
we will notice that not all legal abstract inputs can be mapped onto the circuit.

This is one aspect of conformity, which we can examine without considering
sequential behavior. However, when we begin to consider temporal behavior, we
find that conformity involves even more subtlety.

Before we examine the temporal aspect of conformity, however, we should look
briefly to see if there is an analogous property for the state rather than the input.
Conformity is a kind of a totality requirement, and we also have required that our
state mapping be total. This is an important requirement as well. Just as for the
instantaneous aspect of conformity, we can illustrate the need for totality by using
a simple circuit.

Suppose that we have a "serial AND" circuit and we specify the behavior

we desire with the two assertions In = 1 A Q = 1 4 Out = 1 A Q = 1 and
In = 0 . Out = 0 A Q = 0. Suppose that we did not require the state mapping to
be total. If so, then we could verify the circuit shown in Figure 5.3a against this
specification.

For the first assertion, we find that we cannot map the antecedent onto the
circuit, since the grounded node Q cannot be set to 1. Thus this assertion succeeds.
The second assertion also succeeds. Yet clearly the circuit does not behave as
intended by the specification. The specification describes a system with two states,
Q = 1 and Q = 0, as indicated in Figure 5.3b, yet the circuit has only one state,
Q=0.

This situation arose because we did not require that the state mapping be total,
so the antecedent of the assertion, once it had been mapped onto the circuit, failed
in cases where we had not expected it to fail. Often, if a state mapping were
not total, we would be able to detect a problem because a consequent would fail



118 CHAPTER 5. IMPLEMENTATION

for some assertion. However, we can construct pathological specifications such as
this one in which the failing state Q = 1 has no incident edges in the transition
graph (other than self-edges), so it does not occur in a consequent (other than one
in which it also occurred in the antecedent). Since we cannot rely on failure in
the c -nsequent to detect such unmappable states, we require that the mapping be
tota,

This has the effect of outlawing circuit antecedent failure in cases when the
antecedent succeeds at the abstract specification level.

In addition to their single-state or instantaneous aspect, failures can have a
temporal aspect. This is an even more subtle aspect of conformity. It can also
be illustrated by simple examples. However, rather than introduce yet another
special-purpose circuit example, we can refer to the stack example of Chapter 2.
In Figure 2.13 (p. 36) we have already seen an example where conformity failed
for a sequence of stack operations, when we attempted to have a "pop" operation
follow a "hold" operation. When mappings take on a temporal aspect, we must
ensure that conformity holds over sequences. In the case of the original definition
of the stack operations, conformity did not hold.

This is an example of a general phenomenon. To achieve good performance,
most circuits overlap successive operations. It is quite conceivable that a mapping
I might "work" for short sequences but fail to work on long ones, due to conflicting
requirements on an overlapping interval. Therefore we include an explicit check
that the overlapping portions of inputs must conform to one another.

Distinction

This property rejects trivial implementations. Without it we would be able to
say that a trivial machine, which has only one output, implements every machine,
because its behavior-the only one it can possibly produce-is always in the image
of any other machine's behavior, since there is only one possible mapping-the
mapping onto this behavior.

5.2.4 Example

Since our notions of agents and of implementation are rather general, they can be
illustrated in a more general context than is our ultimate application. This em-
phasizes that the definition of implementation is a natural one. As an illustration
of the notion of implementation, consider the analog buffer shown in Figure 5.4.

Now suppose that we wish to implement a buffer, but that its input is differen-
tial. That is, the input value is encoded as the difference in voltage between two
wires. We can implement a differential-input buffer using a differential amplifier,
or "diff amp." Figure 5.5 illustrates a diff amp constructed from an operational



5.2. IMPLEMENTATION BETWEEN AGENTS 119

10

8

V0
6

2

2 4 6 8 1 i0
Vi

Figure 5.4: Specification of an analog buffer, and its DC transfer functions.

amplifier.
6

The DC I/O behavior of the analog buffer of Figure 5.4 can be expressed by
the transfer function graphed in the same figure. This serves as a specification of
the intended behavior of a buffer.

The graph in Figure 5.5 shows the I/O behavior of the differential amplifier,
i.e., the realization. An input of the specification is a vertical line in the space of
Figure 5.4. If we take any such vertical line, it corresponds to some vertical plane
in the space shown in the second figure. For example, the vertical plane shown
in the back corner of Figure 5.5 corresponds to the vertical line shown in the first
figure. This vertical plane represents a set of realization inputs: each of the vertical
lines comprising this plane represents a different realization input, each of which
corresponds to the original specification input.

if we take any output of the specification, that is any horizontal line on the
ordinate of the first figure, it corresponds to a horizontal plane at a corresponding
location in the space of the second figure.

The line in Figure 5.4, and the shaded plane in Figure 5.5, represent the re-
spective behaviors of the specification and the realization.

Consider an example of our notion of implementation in the context of these
figures. The input mapping takes voltages to voltage differences. The output

'First-order analysis of an op amp follows from the two principles that the voltages on the
two input terminals will be equal, and the currents into the inputs will be zero, plus Ohm's and
Kirchoff's laws.



120 CHAPTER 5. IMPLEMENTATION

V+ V0

1o0
V 5 i0

0 0
-58

SV- 6 • 2
100

Figure 5.5: Realization of an analog buffer, using a differential amplifier, and its
DC transfer functions.



5.3. RELATED WORK 121

mapping is the identity. Given these mappings, implementation first requires that
for any input to the specification (e.g., the vertical line shown in Figure 5.4),
any corresponding (i.e., mapped) input to the realization (e.g., the vertical plane
shown in Figure 5.5), every possible realization output (e.g., the horizontal plane,
containing the white line, in Figure 5.5) must correspond with (i.e., h, contained
in the image under the mapping of) a possible output of the specification fc: the
original input (e.g., the horizontal line in Figure 5.4. And indeed we see that plane
of the white line in Figure 5.5 lies at the 5V level, the same as the horizontal line
in Figure 5.4.

This has illustrated the notion of implementation when there is some nonde-
terminism in the input mapping. Any pair of realization input voltages having the
proper differential formed an acceptable encoding of a specification input. Suppose
there were some nondeterminism in the specification as well. A specification might
allow its output the tolerance of a slight deviation from the nominal, correct value.
In the illustrated example, it might require that the output fall in the region shown
by the dashed lines in the specification figure. In this case, the realization imple-
ments the specification provided that it yields less deviation than the specification
allows-exactly as we would expect-as indicated by the region defined by the
dashed lines in the realization figure. The realization implements the specification
provided that its output falls within the allowed tolerance.

5.3 Related work

5.3.1 Roles of abstraction

The role of abstraction in hardware verification has received disparate treatments.
For example, someone unfamiliar with formal verification migbt wonder whether
the thesis work of Melham [176] and Long [163] share common ground. Some of
this confusion arises because while the term "abstraction" is very general, it has
seen two different specific uses in formal hardware verification. To understand the
distinction, it is necessary to distinguish between design verification and imple-
mentation verification [66].

Unfortunately, the distinction between design verification and implementation
verification is itself not always clear. Implementation verification is the process
of establishing that "what has been implemented" agrees with "what has been
specified." Design verification is the process of establishing that "what has been
specified" agrees with "what is desired." Design verification is sometimes called
"property checking" [202] which is a more descriptive term.

The kind of abstraction, then, depends on the kind of verification. Implemen-
tation verification is the process of establishing a relationship between two agents
of computation, while property checking is the process of establishing properties



122 CHAPTER 5. IMPLEMENTATION

of an agent. For implementation verification the role of abstraction is to relate
two agents. Abstraction is essential to implementation verification, for there are
a priori two agents to be related.

In contrast, for property checking, the role of abstraction is to simplify both an
agent and the statement of some property, so as that if the simplified agent has the
simplified property, the original agent will have the original property. Abstraction
can be incidental to property checking-it would suffice to check the original prop-
erty of the original agent. The focus in abstraction and property checking must
be different: the abstract (simplified) agent may not be given, so part of the task
is to discover or construct it. Since model checking is property checking,7 work on
abstraction in this context (154, 1631, focuses on different issues.

5.3.2 Abstraction functions

Abstraction techniques for implementation verification are often based on abstrac-
tion functions which map from the concrete to the more abstract-opposite to the
direction of the mappings that we use. Abstraction functions were introduced for
program verification by Hoare, for verifying the implementation of abstract data
types [133].

Mappings from the abstract to the more concrete have been considered in pro-
gram verification. Flon and Misra [105] discuss cases where concrete specifications
are derivable from abstract axioms.

Melham's PhD [176] deals with abstraction in implementation verification, us-
ing the HOL proof system, particularly by describing ways of constructing abstrac-
tion functions.

Burch [61] dealt with abstraction for design verification in trace theory by
defining pairs of abstraction functions to be applied to the specification and the
realization, respectively. If the specification abstraction function underestimates
behaviors, and the realization abstraction function overestimates behaviors, a con-
servative, approximate check for language containment is possible even when the
two abstraction functions differ.

5.3.3 Input-output relationships

The most appealing equivalence between processes seems to be observation equiv-
alence. In the process-algebra context, this is often established by establishing a
bisimulation relation. Though the notion of bisimulation is often attributed to
Milner [181], it is attributed by Milner to Park [196], and has roots in A. Ginzburg

"7 'Model checking" would be an even more descriptive term than "property checking" because
it is actually the model (i.e., agent) that is being checked, not the property, which is taken to be
the one desired, but this would be confusing, because the word "model" in "model checking" is
normally taken to mean the technical sense used by logicians.



5.4. CHAPTER SUMMARY 123

and M. Yoeli's notion of weak homomorphism [113]. Cory's thesis [83] describes
similar criteria for evaluating the consistency of two representations of sequential
machines. These criteria consider only localized state transitions, and Cory gives
no clear intuitive notion of what it means for a circuit to be correct. His approach
to relating different levels of abstraction when timing details differ is to add "trans-
lators" which act as buffers to map between levels of abstraction.' Unfortunately,
Cory's thesis does not significantly relate symbolic execution to these consistency
criteria.

The correctness criteria in string-functional semantics [37, 35, 36, 236, 237] are
also input-output relationships.

5.4 Chapter summary

This chapter has defined a notion of implementation between two agents operating
at different levels of abstraction. Since the levels of abstraction differ, this is not
a simpleequivalence or implication. Instead, a relation between the two levels is
necessary. We chose to express this relation as a nondeterministic "downward"
mapping. Such mappings are sufficiently general to express any mathematical
relation, and we had particular reasons for preferring this direction. (Some of
these reasons will become more concrete in subsequent chapters.) Since the notion
of implementation is rather general, we were able to illustrate it using a pair of
analog circuits and their DC transfer functions.

'This is similar to Bose and Fisher's definition of an abstraction function by means of a circuit
[27].



124 CHAPTER 5. IMPLEMENTATION



Chapter 6

Proving implementation

This chapter shows one way of proving that one machine implements another.
The first machine, or realization, is expressed as a switch-level simulation model.
The second machine, or specification, is expressed as a set of symbolic assertions.
The proof procedure consists of mapping each assertion into a symbolic simulation
pattern, and checking the circuit against it.

This chapter develops a theory whi-h shows that such a check establishes im-
plementation.

6.1 Relation between agents

6.1.1 Mappings

Since specifications and circuits are given at different levels of abstraction, we have
mappings between them. A promising start to a theory of implementations that
encompasses mappings is to look at mappings themselves.

Input-preserving mappings

One class of mappings is of particular interest: mappings that preserve inputs.
These are mappings between agents M and N where ins(M) = ins(N) and Ii.. is
simply the identity mapping.

We can also allow nondeterministic input-preserving mappings.
A class of input-preserving mappings that are particularly important are the

machine homomorphisms.

Definition 21 (Machine Homomorphism) A machine homomorphism H is
an input-preserving mapping from agent M to agent N which is homomorphic
with respect to M and N.

125



126 CHAPTER 6. PROVING IMPLEMENTATION

That is, if H is a machine homomorphism, H(M(i)) = N(H(i)). And since H
preserves inputs, H(M(i)) = N(i).

Machine homomorphism implies obedience

This gives us an example of the obedience property of Definition 17 (p. 115).

Proposition 9 If H is a machine homomorphism from M to N, then N obeys
M with respect to H.

Proof: From the definition of a machine homomorphism, i = H(i), and N(i) =
H(M(i)). Thus N(i) C H(M(i)) so H fits the conditions on the mapping I in the
definition of obedience.

6.1.2 Accepting agents

We have described an agent as a function that takes an input to an output. Another
view is to consider an agent as examining possible input-output pairs and approving
those it likes.

Definition 22 (Accepted Set) If M is an agent, the set of behaviors accepted
by M, denoted accept(M), is defined to be { v E beh(M) I v E M(IIv) }.

Containment

From the elements of implementation given in Chapter 5, together with the notion
of acceptance sets, we can reach an alternate formulation of implementation as
containment. A realization obeys a specification if the set that it accepts is a
subset of the set that the specification accepts. (In the presence of a mapping I
this might be stated formally as accept(R) C I(accept(S)). Similarly, an analog of
our conformity property, that for every is an iR must exist, might also be stated
as H1 accept(R) D 1(11 accept(S)), where II is the projection onto inputs, as we
mentioned when defining agents, in Section 3.2.1, p. 64.)

Equivalent to obedience

Containment of accepted sets is an abstract notion of implementation. Under a
simple condition this more abstract idea is equivalent to our previous notion of
obedience.1

1Note that if sets are replaced by characteristic predicates, this containment statement is
similar to conditions such as XR => Xs as used in theorem-proving based verification efforts.



6.1. RELATION BETWEEN AGENTS 127

Theorem 10 If is: £s -+ ins(R) is surjective, then R obeys S with respect to I
if and only if accept(R) 9 I(accept(S)).

Proof: We will assume that Ii,, is surjective. We must show that accept(R) C
I(accept(S)) if and only if, for every is E £s, every iR E Iins(is), and every
vR E R(in), there is a vs E S(is) such that vR E 1(vs).

.t= Assume that for every is E £s, every iR E Iin,(is), and every vR E R(iR)

that there is a vs E S(is) such that vR E I(vs). From this we must show that
{ VR [VR E R(FIvR) } _ I(f vs I vs E S(llvs) }). That is, we must show that every
VR such that vR E R(IIvR) is in ({ vs I vs E S(flvs) }); in other words, that there
is a vs E S(flvs) such that VR E I(vs).

Consider any VR E R(IHvR). Let iR = H-R. Since Ii,, is surjective, there is
some is such that iR E I(is). Thus from the hypothesis we conclude directly that
there is vs E S(is) so that vR E I(vs).

Assume that { VR I v E R(IIvR) } I({ vs vs E S(flvs) }) and from
this show that for every is E Is, every iR E Iinr(is), and every VR E R(iR) that
there is a vs E S(is) such that VR E I(vs). That is, we know first that each VR
such that vR E R(vR) is in 1({ vs I vs E S(Ilvs) }); i.e., for each vR such that
VR E R(Hvn) there is a vs E S(Ivs) such that vR E I(vs). Second, when we
consider any is E ins(S) we know from the definition of agent S that if vs E S(is)
then is E J1vs. Consider any iR E 1(is) and any vR E R(iR). Again we know

iR = 1IvR. Thus we conclude from the first and second facts above that there is a
vs E S(is) such that VR E I(vs).

Note that we needed surjectivity for only the first part of the proof2. Moreover,
surjectivity is no severe requirement. Rather, it is merely a technical one. If it
does not hold, one could always add a "bottom" input -L to ins(S). Agent S could
be allowed to prodt ce, on this input, any consistent behavior, and I would map
the new element I to the entire set ins(R). In fact, this could be done implicitly.3

Formally we can express this by defining a machine S and mapping I to be the
same as S and I, except that

ins(S) = ins(S) U{I}

I = I\ ins(R)
S(I) = S(ins(S))

Corollary 11 Obedience is transitive.

2which is, however, the portion of this theorem that is most useful
'An alternative would be to limit the inputs of R. We will find later a need for another

surjectivity property in a different context, so for consistency we prefer surjectivity here as well.



128 CHAPTER 6. PROVING IMPLEMENTATION

Proof: We must show that if R obeys S with respect to I and S obeys T with
respect to J then R obeys T with respect to I o J. This is immediate from the
transitivity of the subset relation. U

6.1.3 Exposing and hiding internal state

Implementation is necessarily defined in terms of input-output relationships. Only
through a machine's input-output behavior does it interact with its environment.
But a machine's behavior cannot be concisely defined by giving only its input-
output behavior. Most interesting machines take sequences of inputs and produce
sequences of outputs. The outputs produced at any instant depend on the his-
tory of the machine's inputs. Although abstractly we think of sequences as being
atomic, so that machine behavior is indeed defined purely as a function, in practice
this is cumbersome. Real machines see one input at a time. When we build real
machines, we design them so that they will remember something about their past
inputs, using some hidden, or internal, state.

Again, recall the stack example from Chapter 2. The I/O behavior of the stack
was useful for stating the correctness of the circuit, but it was only after internal
state was exposed, in Figure 2.19 (p. 40) and Figure 2.20, that we could reason
about correctness.

So that our formalism reflects practice, we now define a hiding operator that
lets us talk about such a machine by mentioning only its inputs and its outputs.
The definition turns out to be quite simple.

Definition 23 (Hiding Function) A hiding function is a many-to-one machine
homomorphism.

Properties

The key properties of a hiding function are that both it and its inverse are obedience
functions .'

Proposition 12 Every hiding function is an obedience function.

Proof: Note that each hiding function is also a machine homomorphism. U

Proposition 13 The inverse of every hiding function is an implementation
mapping.5

4Recall from p. 115 in Chapter 5 that an obedience function is a mapping with respect to
which obedience holds, and that an implementation mapping is defined similarly.

'Subsequently it need be only an obedience function, but the stronger result is easy.



6.2. SPECIALIZATION TO MACHINES 129

Hs-1

Figure 6.1: State obedience.

Proof: Note that the inverse of a hiding function is also a machine homomorphism,
hence obedience holds. Since the function is input-preserving, conformity is im-
mediate. Furthermore, the inverse of a hiding function cannot violate distinction.

Theorem 14 (State Obedience) Let S, R, S, and R? be agents. Let R obey
with respect to I. Let Hs: S -+ S and HR: R -A R be hiding functions. Then R
obeys S with respect to I where I = HR o f o Hsz.

Proof: Since Hs is a hiding function, Hi' is an obedience function. The result
follows by transitivity. U

Significance

The state-obedience theorem is illustrated in the commutative diagram of Fig-
ure 6.1.

We wish to show that one agent behaves according to another. This desidera-
turn corresponds to the left-hand side of this diagram. Suppose we cannot make
our proof directly, because the agents S and R make use of internal state which is
not visible in their behavior. This is the usual case for sequential systems.

Suppose that if we were to include the hidden state in our analysis, then we
could show that one agent implements another. This is the right-hand side of the
diagram. The state obedience theorem says that we can transfer an obedience
result from the right-hand side of the diagram to the left-hand side, provided only
that moving from right to left involves only the hiding of internal state.

6.2 Specialization to machines

The preceding development has been rather abstract. We have considered imple-
mentation relations between agents which we modeled as pure functions. While



130 CHAPTER 6. PROVING IMPLEMENTATION

this is suitable for the mathematical modeling of our most abstract ideas, actual
machines that exist in the real world do not receive their input sequences atomi-
cally. Instead, they get inputs one at a time, as inputs arrive. Henceforth we will
consider sequential machines which receive such sequence of inputs. We continue
to keep the treatment abstract where possible.

6.2.1 Obedience

We now turn to the constituents of implementation: distinction, conformity, and
obedience, in the context of sequential machines.

The key property that we must establish in order to say that a circuit imple-
ments its specification is that its behavior is allowed by the specification.

We have already discussed what we called a state-implementation property,
which allows us to consider hidden state of the circuit and specification, which the
environment does not see.

However, our view of agents is still one of functions from inputs to outputs.
An agent takes an entire input sequence as a unit, and produces an entire output
sequence. In order to complete the methodology we must somehow break down
such sequences into constituent elements. Again, we will adopt an abstract point
of view. The most important results do not depend on the fact that we are try-
ing to dissect sequences. Instead, they rely on fundamental properties such as
associativity, homomorphism, and closure.

6.2.2 Behavior fragments

Recall that [G]. denotes the closure of set G under binary associative operator ..

Proposition 15 If a binary associative operator o is defined on sets TR and Ts,
mapping I: Ts -+ TR is e-homomorphicj and TR 9 I(Ts), then [TR]. _ 1([Ts]o).

Proof: Let a E ITRI.. Then there exists an ordered set of k > 1 elements
ai,a2,..., ak from TR such that a = a, e a2 e... 0 ak. Since TR 9 I(Ts), for each
ai E TR there is some bi E Ts such that ai E I(bj). Let b denote b, e b2 e... e bk.
Since I is e-homomorphic, a E 1(b). Clearly b E [TsI,, so a E 1([Ts].).

Note that b, * b2 .. 0 bk must be defined, since I(b1 • ... * bk) exists and
I is e-homomorphic. U

Theorem 16 (Fragment Obedience) Let // be a binary associative operator.
If [TRJIl = accept(R) and [Ts]11 = accept(S), mapping I is #-homomorphic, and
TR g I(Ts), then R obeys S with respect to I.

'i.e., homomorphic with respect to *



6.2. SPECIALIZATION TO MACHINES 131

Proof: This follows from the previous result and the equivalence between obedience
and the containment accept(R) C I(accept(S)). U

This is an important result. It builds a formal bridge between behaviors and
transitions. When we examined the simple circuits of Chapter 2, we looked only at
single transitions--or at most short sequences--of the specification machine. By
using the idea of closure, we can combine as many transitions as we need when
building a behavior.

The associative operator * can be thought of as a generalization of concatena-
tion. We will soon apply this result to our marked-string representation, yielding
an important theorem.

6.2.3 Transitions

Transitions, i.e., pairs of configurations, form a set of generators for a language,
where the associative operator is a "domino" matching operator. Let A be a set
called the alphabet, and let T be a set of strings of length 2 over A, called the set
of transitions.

Definition 24 (Domino Concatenation) The partial binary operator • is de-
fined on strings over alphabet A. First, c - = s and s - = s. When both strings
are nonempty, a - b = tuv if a = tu and b = uv and u has length 1. Otherwise,
a-b= T.

In other words, - behaves somewhat like the rule for the game of dominoes-things
can be connected only when they match.

Proposition 17 The operator- is associative.

Proof: We must show that the equality (a. b) . c = a. (b- c) holds. If at least one of
a, b, or c is the empty string c, this is obvious. Otherwise, if b has length one, then
a b is defined when a = tb, in which case a b = a, and b. c is defined when c = bx,
in which case b- c = c, so if either side is defined, both are defined, and they then
reduce to a c. But if b is longer, then let uvw = b (v might be empty) where u
and w have length 1. Then if a = tu, then a -b = tuvw and if c = wx, then the
left-hand side is tuvwx. On the other hand, b. c = uvwx so the right-hand side of
the equality is also tuvwx. U

It is then clear that S can be the set of states, and T the transition relation, of a
finite-state system; the .-closure of T is then the set [T]. of histories or computations
of the system.



132 CHAPTER 6. PROVING IMPLEMENTATION

6.2.4 Marked strings and overlapped concatenation

In considering machines at different levels of abstraction, an important difference
is of time scale. Abstractly, a computer executes sequentially a totally ordered
sequence of instructions. These instructions may be implemented in terms of the
cycles of a clock. The clock, in turn, may consist of multiple phases. Finally, within
each clock phase particular events may have to occur in sequence. We require a
model of this phenomenon. Marked strings provide such a model. Marked strings
were formally defined in Chapter 3. A full treatment appears in Appendix A. Since
marked strings are new, we review them here.

A marked string over the alphabet A is a string over the alphabet A U {'},
assuming that the prime symbol, which we call the marker, is not an element of
A. For example, e- (the empty marked string) and a and abc and a'bc' and a".b and

"are all marked strings.

We use marked strings to relate two models with different levels of temporal
abstraction. Very roughly speaking, the symbols between two markers of the de-
tailed model will correspond to a single symbol of the abstract model. Making an
analogy to music, the higher-level model might be in terms of measures, with the
lower-level one in terms of notes; the markers would correspond to the bar lines in
the staff. In engineering practice, sketching vertical lines in a timing diagram to
delimit successive operations is also common.

Since the intended application behind our abstraction is that the markers
should delimit the beginning and the end of an operation, we will be most in-
terested in 2+-marked strings, that is those with at least two marks. A string a
is k-marked if it contains k occurrences of the marker. It is k+-marked if it is j-
marked for some j _> k. We say a string is unmarked or mark-free if it is 0-marked,
and that it is really marked if it is 1+-marked. We say that a 2+-marked string is
in normal form if it is expressed as u'v'w where u and w are unmarked strings.

An alternative to including markers between symbols would be to maintain
a parallel string of marker bits, with a 1 indicating a marked location and a 0
indicating an unmarked one. Equivalently, this could be represented as a function
from positions to bits [175]. However, this would be less general because it disallows
the possibility of two adjacent markers. We prefer marker insertion to parallel
marker bits anticipating future extensions. For example, the superscalar designs
comprise an interesting class of circuits. These dispatch multiple instructions in a
single cycle. In moving from a totally ordered instruction stream at the abstract
level to a partially ordered stream at the circuit level, it might be convenient to
say that some instructions can take zero time.



6.2. SPECIALIZATION TO MACHINES 133

Overlapped concatenation

In additij',n to the idea of relating a fine-grained sequence to a coarser one, we
must acknowledge that in a pipelined circuit one operation can begin before its
predecessors have completed. By keeping this aspect of our model sufficiently
general, we find that we can also use it for more mundane aspects. For example,
most circuits require that the clocks be operated a certain way before an execution
cycle can commence. When one operation follows another, there will be an overlap.

We model this idea with the notion of overlapped concatenation. We can
illustrate the basic idea in Figure 6.2. We take two strings u'v'w and x'y'z, where
u. w, x, and z contain no marks (but v and y may contain marks). Then we align
the last mark of the first string with the first mark of the last one. to produce a
new string, u'v'w//X'y'z, where we insert the mark symbol as necessary. The figure
shows what might be called "well-behaved" overlapped concatenation, where x
does not extend past the left of u and w does not extend past the right of z. The

Figure 6.2: Overlapped concatenation of 2+-marked strings

formal development of marked strings does not require such a condition on overlap.
(This accounts for much of the complexity of the formal definition.)

We extend overlapped concatenation to sets, throwing out cases where con-
flict occurs. For example, the overlapped concatenation {a'bc', a'ba'}//{a'bc', a'ba'}
yields {a'ba'bc', a'ba'ba'}. (Here a, b, and c are symbols, not strings.)

Chapter 3 introduced the basics of a theory of marked strings. Appendix A
develops the full theory. An important result is theorem 2, that //is an associative
operator. Furthermore, we can define a function CL that removes the last mark
from a marked string. The set of marked strings with two marks, which we call
the double-marked strings and denote A2'* for alphabet A, is especially important.
If x has two marks, we can show (proposition 5) that CL(x)l/x = x. That is, if we
remove the last mark from a copy of x, when we form an overlapped concatenation
with the original string on the right, the alignment is such that we get the original
string.

Additionally, we can split strings at markers. We can define the "measure-
ments" of a string, den jjxfl, as the pair giving the lengths of the portions of
x before and after the fi,_. mark. We can also define a notion of "compatibility"
; between marked strings; for 2-marked strings, x -_ y iff CL(x)//y 0 T. We
indicate formation of a set of incompatible strings with a superior tilde; if S is a



134 CHAPTER 6. PROVING IMPLEMENTATION

set of marked strings, S denotes the set of incompatible strings having the same
measurements.

Using this machinery, we can take maps which take states to 2-marked strings,
and construct maps that take transitions to 2-marked strings, and which are ho-
momorphic over the combining of transitions to form behaviors.

Behavior maps

Using marked strings, we can now proceed to develop a methodology capable of
showing that pipelined systems implement non-pipelined specifications.

First. we define a mapping from configurations of the specification onto 2-
marked strings of configurations of the realization. We call such maps configuration
maps. We use this mapping to induce a mapping from strings of configurations of
the specification onto marked strings of configurations of the realization. Strings of
configurations are behaviors, so we call such maps behavior maps. A transition in
the specification is just a string of two configurations. We can combine transitions
of the specification using the domino concatenation operator defined previously
(definition 24). The key result is that the behavior map induced by a configu-
ration map is a homomorphism. This allows us to apply theorem 16 (fragment
obedience). Thus, we can check containment of the image, under the behavior
map, of the transitions of a specification, but conclude that the realization obeys
the specification.

Definition 25 (Configuration map) A configuration map from machine S to
machine R is a J: config(S) -4 P(config(R) 2 ') such that every two elements s, t E
range(J) have the same measurements, fJsf( = IIll.

In other words, a configuration map maps configurations of S onto 2-marked strings
of config(R).

Definition 26 A configuration map is distinct if whenever a , b, c E J(a) and
d E J(b) implies c • d.

Definition 27 (Behavior map) The behavior map induced by a configuration
map J is a map I: config(S)" -4 P(config(R)'") given by

I(T) = CL(J(x))

where J on strings is extended as J(ax) = .J(a)//J(x).

TIheorem 18 (Overlap theorem) The behavior map I induced by a distinct con-
figuration map J is a homomorphism between the structure (config(S),,) and the
structure (P(config(R)'), //).



6.3. ASSERTIONS 135

Proof: There are two cases to consider. Let ;i and j/ be strings over config(S).
The cases are defined by whether 1. = T. If i is of the form xb and 9 is of
the form by, where b has length 1, then the reasoning is as follows. We expand
by the definition of I, then apply lemma 4. Choosing elements of J(b) we can use
proposition 6 in order to apply lemma 3. Finally we collapse by the definition of
I.

I(xb. by) = CL(J(x)//J(b))# CL(J(b)//J(y))

= J(x)// CL(J(b))i/J(b)// CL(J(y))

= J(x)//J(b)//CL(J(y))

= CL(J(x)//J(b)//J(y))

If on the other hand i is of the form xa and ý is of the form by, where a and b are
different and have length 1, then we can reason similarly:

I(xa by) = CL(J(x)#1J(a))// CL(J(b)//J(y))

= J(x)// CL(J(a))//J(b)// CL(J(y))

Since J is distinct, from proposition 5 and the subexpression CL(J(a))//J(b) ;:.e

can conclude CL(J(a))//J(b) = 0. U

This is the first central result of the thesis. It allows us to reason about tran-
sitions and conclude properties of behaviors, and it accounts for the overlapped
operation of pipelines. In order to verify that a realization obeys a specification,
we can provide a distinct configuration map from the specification onto the realiza-
tion. Once we have done so, this theorem tells us that we can apply the fragment
obedience theorem-we need only show containment with respect to transitions
and we can conclude obedience. The remaining step is to show containment of
transitions.

A verification methodology has taken shape. We can show that obedience holds
for individual fragments, i.e., transitions, of two machines. This implies that obe-
dience holds for the closures, i.e., behaviors of the machi'ies. These behaviors
include internal state that is not visible through the their 10 behavior. But ac-
cording to our state-obedience result of theorem 14, obedience holds between the
two machines when they are viewed only through their 10.

The remaining step is to relate the methodology as thus far developed to our
idea of what specifications should look like, which we discussed in Chapter 3.

6.3 Assertions

An assertion N = (A, C) with antecedent A and consequent C represents a superset
of the transition relation of M. We will denote this set by T(N) (to be read



136 CHAPTER 6. PROVING IMPLEMENTATION

"transitions of N").'

Definition 28 (Transitions of an assertion) The set of transition of an asser-
tion N is given by the equation

T(N) = A x C U A x UM

This reflects the intended meaning of an assertion: that 1) when the system is
in a configuration within set A, it must next be in a configuration within set C,
but 2) if the system starts in a configuration outside A, the assertion imposes no
restriction on the configuration it will next be in. This is the meaning of a single
assertion.

Let i index the set of assertions. The meaning of a set of assertions is simply
the intersection of the meaning of each of its members, ni T(Ni).

Definition 29 (Images of a transition) The set of images of a transition N, is
defined by the equation

S= U CL(I(a)//I(c)) u n CL(!(a)#U)
aEAA, cECi aEAi

in which the bold U denotes the set of all possible marked strings representing
behaviors of the realization.

Our goal is to check a circuit against each assertion, and somehow draw a
conclusion about the relation between the circuit and the entire specification. From
the preceding material, the desired conclusion is clear: we wish to show that

where I is a distinct behavior mapping. TR is the behavior of realization R, and
T(Ni) is the set of transitions defined by the i-th assertion in a specification. This
is a containment of behavior fragments, from which we can conclude containment
of behaviors, hence we conclude that the circuit obeys the specification. We seek
a test to imply this desideratum.

However, the check that we can actually make is, for each assertion i:

TR _ TI(N2 )

where TI is the set of images of a transition, as defined above. We make this check
by a form of symbolic simulation called trajectory evaluation 1561. That is to say
that in essence we check two things. First, when the circuit is forced to behave

7The notation JTM was defined on page 78 to be config(M).



6.3. ASSERTIONS 137

according to the antecedent of the assertion, it also behaves according to the con-
sequent. Second, implicitly, when the circuit behaves contrary to the antecedent,
it may do anything. That is, for behaviors which are described by marked strings
incompatible with everything in the antecedent, the circuit's behavior might be de-
scribed by any marked string. (We are restricting our attention to marked strings
whose measurements are all the same, because of our definition of a transition
map. This is simply because we are examining the circuit's behavior for only a
limited period of time when we are checking assertions.)

Theorem 19 (Checking) If the containment TR g TI(Ni) holds for every asser-
tion Ni, and I is a distinct, onto behavior mapping, then the containment

also holds.

Proof. We need to demonstrate that n TI(Ni) I (fT(Ni)) which implies theProof

desired containment by transitivity from the previous equation. Since the map I
is distinct we can easily see that

so we need only to show for every i that TI(N2 ) _ I(T(N2 )) When we expand this
by the definitions of TI and T and I we get the new desideratum

U U CF(I(a)//I(c))u n CF (i(a)//U) C
.iAi cECi aCA,

U U CF(I(a)//I(c)) U U U CF(I(a)/I(c))
aEA, cEC, aEA-, EUM

Each side o' this containment is a union, and the left-hand side of the unions
on each side is the same. For the containment to hold, we need only establish
containment between the right-hand side of each union. This will follow from the
containment

n I(a) C 1 (A)aEA\I

We can see that anything in the left-hand side must be in the right by choosing
any s E nEA 1(a). We know for any t E A that s 6 t, so s 1 I(A). Since I is
surjective, s E I(A). I

This is the second central result of the thesis. It tells us that we can check that
the circuit behavior falls within the image of each assertion in the specification,
and conclude that the circuit's transitions are contained within the image of the



138 CHAPTER 6. PROVING IMPLEMENTATION

a b c a b c a b c

a. first assertion b. second assertion c. intersection

d e d e

d. realization e. mapped specification

Figure 6.3: Example of specification illustrating need for distinction.

specification's transitions. This means that the the overlap theorem holds, so the
circuit obeys its specification.

The requirement that the mapping be distinct is fundamental to the direction
of the mapping, as the following example illustrates.

For ease of illustration, in this example we will label states, represent transitions
with diagrams, and ignore the implicit transitions not covered by antecedents.
Consider a specification machine with three states a, b, and c. Let its specification
be given by the two assertions a =4 a V b and a 4 a V c. The first says that when
the machine is in state a, either it can stay there, or it can move to state b. The
second says that when the machine is in state a, either it can stay there, or it can
move to state c. Taken together, they say that when the machine is in state a
it must stay there. Figure 6.3, parts a, b, and c, illustrate the transition system
defined by this specification.

Consider a realization machine with two states d and e, which from state d
can only make a transition to state e. Figure 6.3d illustrates its transition system.
Consider the mapping f: a ý-+ d, b ý-+ e, c ý-+ e. Under this mapping both assertions
hold, yet the second machine does not implement the first.

Consider the image of the first assertion a 4 a V b under this mapping, namely
d •4 d V e. This is shown in Figure 6.3e. Clearly this assertion is satisfied by the
realization machine, whose transition could be described exactly by the assertion
d •4 e. The image of the second assertion a 4- a V b is the same, d 4 d V e, so it
is also satisfied.

Yet the specification machine (Figure 6.3c) always stays in one state, while the
realization machine (Figure 6.3e) always leaves it. Clearly this realization does not
implement this specification. Distinction is an important property.



6.4. DISTINCTION AND CONFORMITY 139

6.4 Distinction and conformity

In addition to obedience, the other two properties we must establish are distinction
and conformity.

6.4.1 Distinction

In order to say that one machine implements another, distinct outputs of the
specification must correspond to distinct outputs of the realization. It is necessary
,o tell different things apart to prohibit trivial implementations.

It might be thought that this is a simple property which can be checked point-
wise, and then shown inductively to hold for sequences. Unfortunately, this is
not so. When successive realization outputs are concatenated, the boundary be-
tween them disappears. But the location of this boundary may be the only thing
distinguishing two output sequences.

Ambiguous boundaries

A simple example illustrates this. Consider a serial adder (or any other circuit
having an unsigned, bit-serial output). Assume as usual that the least-significant
bit of output is presented first. Since we are reading left-to-right, for this example
only we will write the least-significant bit of each word on the left. For example,
10 is one and 01 is two.

Suppose the circuit is being used on words of several different lengths.8 Indi-
vidually, outputs are not ambiguous. The bit-string 0 is a one-bit representation
of the number 0. The bit-string 1 is a one-bit representation of the number 1. The
bit-string 10 is a two-bit representation of the number 1. The bit-string 01 is a
two-bit representation of the number 2.

However, when we concatenate outputs, ambiguity results, even if we know the
length of the abstract output. The bit-string 101 is the one-bit representation of
the number 1, followed by the two-bit representation of the number 2, but it is also
the two-bit representation of the number 1, followed by the one-bit representation
of the number 1. In each case, the abstract output is a sequence of length two; it
is either 12 or 11.

However, adding marks to the input and output strings eliminates the ambigu-
ity. In the example above, the marked bit-string '1'01' could be used for the first
alternative, and the marked bit-string '10' for the second.

The marks, however, Pre fiction. Actual machines do not have them. The
proper interpretation of the timing of a system's outputs is up to its environment,
which we are not considering.

'Actually, most bit-serial systems are pipelined and the word size is fixed [2221, so this is a
somewhat contrived example.



140 CHAPTER 6. PROVING IMPLEMENTATION

The marks are analogous to the vertical lines one might sketch in a timing
diagram to see how the input timing relates to the output timing. The vertical
lines, which correspond to our marks, are useful in reasoning about the circuit.
The circuit itsc If doesn't need this information, and the environment in which the
circuit is used keeps track of timing in its own way (which we do not even have
reason to consider).

Distinction is a component property of implementation because in order to say
that one machine implements another, different outputs of the specification must
not correspond to the same output of the realization. If were were to allow different
specification outputs to correspond to the same realization output, we would allow
the trivial realization, which has only one output, to implement every specification.
Clearly this is undesirable, so we imposed the requirement of distinction on the
output mapping in our definition of implementation.

Furthermore, we required that the state mapping be distinct in order to prove
the overlap theorem, and as we demonstrated with a simple example, this was
not merely a technical requirement. Thus, we must be able to guarantee that a
mapping is distinct in order to use it for verification.

We will discuss this further in Chapter 7 when we discuss the semantics of
a mapping language, in section 7.3; for now we note that there are two possible
approaches: to check that entire mappings are distinct, or to guarantee that they
are distinct from the way in which they are constructed.

6.4.2 Conformity

The last of the properties that we must establish in order to say that a circuit
implements its specification is conformity.

Briefly, conformity is the property that every legal abstract input sequence can
be applied to the circuit. Where two adjacent abstract symbols map to overlapping
circuit operations, the areas of overlap in the operation must conform to each other.

Conformity is problematic, as it is a property of the input language. Since the
input language could (at least conceptually) be anything, the complexity of general
conformity could be quite high-even undecidable.

Such theoretical generalities should not hinder progress on some practical cases.
Fortunately, in the case of a microprocessor the input language is rather simple.
The alphabet is small, consisting of a few symbols such as "reset," "run," and
"interrupt" and the interesting inputs-the input language-are those that contain
exactly one "reset," at the beginning.

Example Conformity is not merely of theoretical concern, as the following ex-
ample illustrates. Consider a system whose inputs are encoded with a NRZ code
(transition signalling). We can model such a system with specification input al-
phabet { a, b }. For concreteness, let the realization input alphabet be { 0, 1} and



6.4. DISTINCTION AND CONFORMITY 141

a b bab

a. Map of input symbol a b. Map of input symbol b c. Can map input string bab

b bab

d. Bad map of input symbol b e. Cannot map input string bab

Figure 6.4: Conformity of input sequence under NRZ code. c. Mapping the ab-
stract input string bab yields two possible realization inputs. d, e. With a mapping
that lacks conformity, the input string bab cannot be mapped onto the circuit.
Conflict is indicated by the dark grey area. Note that it is necessary to examine a
sequence of at least three symbols in order to notice this problem.

an implementation mapping be I: a - { 0'1', 1V0' }: b V { 0,0', i'1' }. Thus the
specification input a is represented by a transition in the circuit, while the input
b is represented by the absence of a transition. This situation is illustrated by
Figure 6.4 parts a, b, and c.

Suppose, however, that instead of this mapping, we use a mapping J: a +

{ 0'1', 1'0' } : b ý-+ { 0'0' }. In other words, a is represented by a transition, while b
is represented by the absence of a transition at a particular logic level. Figure 6.4
part d illustrates this situation.

Under this second mapping, the input string bab cannot be mapped onto the
circuit. This can be determined from the marked string formalism. (Recall that
strings are mapped by overlapped concatenation of the images of their elements,
and that when we extended overlapped concatenation to sets, we "threw out" the
conaflict indicator T.) If wc L;t: to cornptethc mapping, we find that while
J(ba) = { 0'0'1'} and J(b) 0 {0'0'}, the mapping J(bab) = 0. We must find a
way to ensure conformity of languages and mappings more complicated than this
example.

Construction and inspection of a machine that accepts the conformable inputs is
a plausible approach for such a simple language. For more complicated languages,
such as ones with data-dependent sequencing constraints 9, a more general model-

9imagine a pipeline without interlock or bypass. The input language should be defined to



142 CHAPTER 6. PROVING IMPLEMENTATION

checking approach could be used in place of inspection.

Infinite conformity machine

It is easy to construct an infinite machine accepting the conformable inputs. The
idea is to label states with strings. Let L denote a labeling function on states, let
A be the abstract input alphabet, and let I the mapping from A onto 2-marked
strings of the circuit. Start with an empty string labeling a start state, the sole
element of some frontier set F. While the frontier set F is nonempty, choose some
f E F. For each a E A and each s E I(a), create a new state q with label L(f)//s
and transition f + q and add q to the frontier set. Then remove f from F.

Clearly this does not terminate; F is shrinking no faster than it grows. However,
it does yield an easy test for conformable strings: run this machine or th- string,
and check that the final state label is not T.

Finite conformity machine

The infinite construction is the basis for a better algorithm, by mapping the infinite
machine to a finite one, using a map "rep" such that L(rep(s)) = T iff L(s) = T.

Note that the important thing about a state is its label, that being the informa-
tion used in the ultimate decision of conformity for a string. The infinite machine
used two operations on labels: the construction of new labels, and the test for
equality with T. Thus, the mapping of the infinite machine to a finite one should
obey the equation rep(a//b) = rep(rep(a)//b), and rep(s) should be T iff s = T.
Note that the equation need only hold for b E I(inp(S)), not arbitrary b.

With such a mapping we can construct a machine accepting the conforming
strings. Instead of creating state q with label L(f)//s, we first check for an existing
state with label rep(L(f)//s) and if so we use it; otherwise we create q. Clearly
the modified algorithm terminates if the range of rep is finite. Construction of a
suitable rep is an exercise in marked strings.

Further work

Symbolic extensions of this are clearly possible; their details and utility would
depend heavily on the symbolic model-checking to be applied to the constructed
machines.

6.5 Related work

Those familiar with program verification are no doubt wondering how assertions
over state machines relate to the assertions of Hoare logic of program verification

avoid pipeline hazards.



6.5. RELATED WORK 143

[133]. A Hoare assertion is a triple P{Q}R where P and R are predicates on
program state, and Q is a statement-possibly a compound statement-in an
imperative programming language. Predicate P is called the precondition, and
predicate R is called the postcondition. The meaning of a Hoare assertion is that
when a program in a state within P executes statement Q, the program is then in
a state within R.

The chief difference between our assertions and the Hoare-assertion notation is
that our assertions describe single transitions of a system. We have no combining
forms. Supposing, however, that we were to invent a notation to allow the sequen-
tial composition of transitions, we can sketch a rough correspondence between our
notion of assertions and Hoare logic.

To cast an assertion (A, C) in Hoare-logic form, we have two alternatives. The
most straightforward is to identify P = A and R = C, and let Q denote the state
transition-the passage of time. We can show that in such a formulation, the proof
rules for Hoare logic-strengthening preconditions, weakening postconditions, and
sequential composition-remain valid.

The other alternative is to identify P = 1IrA and R = -rC, and let Q = ITiA.
In addition, we require that 11iC be the set of all possible inputs. That is, P is the
portion of the assertion's antecedent that constrains initial state, R is the portion
of the assertion's consequent that describes final state, and Q is the portion of the
assertion's antecedent that describes inputs. We require that the consequent say
nothing about inputs after the transition. Thus, for machine S we would have

1lA', {IIA} (IIC x inp(S))

where HI is the projection function which yields inputs.
In this formulation, the "statement" Q denotes the machine's input-the "op-

eration" that the machine is being told to perform during the transition. While
this is artificial, it maintains the segregation between command and state present
in Hoare logic.

Our notation for transitions is rather cumbersome if extended to sequential
composition. But suppose we do so. For example, we could write the compound
assertion (A1 ; A2; A3, Ci; C2; C3) with Ai+1 = Ci. We would need to extend domino
concatenation in a way so as to be able to construct such structures. The ideal
notation would also elide elements like Ci, C2, since they can be recovered, and
somehow hide the state portion of A2, A3. In such a formulation it should be
possible to show that an analog of Hoare's sequential proof rule holds.

Before carrying out the construction in detail, however, we should consider
the purpose of the work. The purpose of Hoare logic is to enable compositional
reasoning about statements in the presence of several combining forms, such as if
and while. This is analogous to reasoning about the specifications discussed here,
rather than the implementation properties we are focusing on. Also, we have only



144 CHAPTER 6. PROVING IMPLEMENTATION

a single combining form: sequential composition, rather than several. In summary,
Hoare logic, while having some similarity to our notations, is not an appropriate
formalism for this work-the goal and the character of the problem are actually
different.

The methodology described here depends upon the explicit statement of the
relationship between a realization and its specification. For systems designed by
engineers, such a relationship already exists. At worst, it is in tacit form. However,
for a system synthesized from its specification using the mechanisms of high-level
synthesis, this relationship may not be available. Blackburn [19] has considered the
problem of relating levels of design representation in a high-level synthesis system.
In fact, he proposed that formal verification could be one application of his work.
It would be possible to use his techniques to automatically construct mappings
between simple synthesized circuits and optimized synthesized circuits, and then
check their relationship by the techniques of this thesis, thereby ensuring that the
applied optimizations were correct.

There has been relatively little work actually capable of showing that a pipelined
circuit meets a specification having non-overlapped timing. Sometimes-when the
10 behaviors of the specification and of the circuit are actually the same-simple
cases can be handled by state-machine comparison algorithms, e.g., constructing
the product machine and checking that it never produces an inconsistent output.
Nobody has used such a technique to verify a microprocessor.

Many approaches do not attempt to encompass the possibility that the real-
ization of a specification may have quite different timing from the original. One
approach that has similar goals is that of Devadas and Keutzer [91] based on p-
automata. A p-automaton is a machine with extra inputs, called metainputs, which
represent nondeterminism. P-automata may be constructed from a behavioral
specification, and circuits may be compared to them using standard techniques.
This approach is subject to the state explosion problem.

The string-functional semantics originated by Bronstein [36] and further de-
veloped by Van Aelten [236] contains several specialized relations for describing
pipelines. Bronstein's original formulation allowed for two "pipeline relations:"
one called a expressed a delay relationship, and one called # expressed a "stut-
tering" relationship [1]. Van Aelten revised 8 so that it nearly subsumed a, and
introduced a "parallelism" relation. Bronstein's mechanization was in logic using
the Boyer-Moore prover, while Van Aelten has taken more of a state-machine ap-
proach. Bronstein verified a simple pipelined CPU, and Van Aelten and colleagues
have verified a CPU and other simple pipelines (237]. So far neither technique
has been used to verify a processor, but there appears to be no reason that this
formalism could not be used as the basis of such a task.

Stuttering [1] is a relationship between two sequences where one may repeat
occurrences of symbols. For example, the strings "abcdefg" and "aaabccc" are in a
stuttering relationship, while "abcdefg" and "aaabdcc" are not. Stuttering is used



6.6. CHAPTER SUMMARY 145

to model different levels of timing by "speeding up" the more abstract machine to
let it make transitions at the same rate as the more concrete machine, while requir-
ing that these new or stuttering transitions always be from a state to itself. One
conceptual difficulty with stuttering is that it may add state to the more abstract
machine-knowing the machine's present state and input is insufficient for predict-
ing the transition, not knowing whether it will be a stuttering transition. This can
be modeled with nondeterminism, but this converts a deterministic specification
into a nondeterministic one, and may also require imposing auxiliary conditions to
ensure progress (i.e., to disallow the case where the system henceforth makes only
stuttering transitions).

Srivas and various colleagues have used theorem provers which were devel-
oped for reasoning about functional langluages to verify two pipelined processors
[213, 227], using a stuttering relationship. Functions that manipulate (infinite)
sequences can be written using (lazy) functional languages, making such provers
suitable tools.

It is significant that all of the work capable of addressing this-including
the present thesis, which tries to take a state-machine-based view of systems-
ultimately at some point describes relations between sequences. At the granularity
of a single clock cycle, there is a great difference between a pipelined machine and
a non-pipelined version. Only by considering multiple cycles can the similarity be
seen.

6.6 Chapter summary

Implementation of one machine by another can be viewed as set containment: of
I/O behaviors, but also when internal state is exposed. When machines differ in
their level of abstraction, a nontrivial relation between their behaviors becomes
necessary. When this relation is expressed as a nondeterministic mapping, im-
plementation becomes containment within an image under this mapping. When
behaviors form semigroups and the mapping is homomorphic, containment of one
set in the image of another will follow from a similar containment involving only
generators of the semigroup. Thus, to show that a realization implements the be-
haviors of its specification, requires only to show that it implements the transitions
of its specification.

Digital systems employ pipelining, the overlap of successive operations. Thus,
each "operation" is actually a sequence. Short sequences of system operation can
be represented by strings. Overlapped sequences can be analyzed by augmenting
the alphabet with a distinguished symbol, the alignment marker, and defining an
associative overlapped concatenation.

Combining these two ideas lets us generate verification conditions by mapping
abstract transitions to sequences of circuit operation. An assertion is a symbolic



146 CHAPTER 6. PROVING IMPLEMENTATION

representation of a set of transitions.



Chapter 7

Applying the methodology

The theory discussed thus far is rather abstract. Details must be supplied if we
are to apply the theory to a real example. This cl apter supplies these details.

First, it develops a notion of decomposition, ý,hich is need-d to verify a proces-
sor realization against a computer specification. Then it discusses issues regarding
the representation of sets of marked strings in a verifier, and the facilities needed
to make a verifier usable.

7.1 Decomposition

This section is a digression from the methodology. It discusses the verification
of decomposed systems. Decomposition is an important pragmatic concern. If
P denotes a processor and M denotes a memory, their composition PM is a
computer. The behavior of the components P and M determines the behavior of
the composition. We already saw a simple example of decomposition in section 2.3
when we considered a 3-bit stack built from a 2-bit stack and a 1-bit cell. In the
present notation, the 2-bit stack is M and the 1-bit cell is P. As we saw in this
example in Chapter 2, we cannot simply say that decomposition can be treated
at the specification level. A computer may perform many memory operations in
executing one instruction, so although the entire instruction can be considered to
be a single transition of the entire system, the treatment of the memory system
must consider the temporal aspect of the sequence of memory operations.

7.1.1 Compositions

Two agents can be composed if they can be connected using projection functions.
Suppose we have agents M and P. We will construct a composite PM. The
choice of letters suggests that P might be a processor and M a memory system;
PM would be a computer. This is not a requirement. For example, P might be a

147



148 CHAPTER 7. APPLYING THE METHODOLOGY

Figure 7.1: Wiring diagram for machine composition. Two component machines,
wired together as shown, form a composite machine. Outputs of either machine
may be connected to inputs of the other. Inputs and outputs may also be connected
externally.

data path and M another circuit such as a controller.

To connect P and M, we would wire some outputs of P to inputs of M, and
some outputs of M to inputs of P. In order to connect outputs of P to inputs of
M, some projection of ins(M) must be a projection of beh(P). This projection
denotes the outputs of P that are connected as inputs to M. Similarly, some
projection of ins(P) must be a projection of beh(M). It denotes the outputs of
M that are connected as inputs to P. Figure 7.1 illustrates the connection of two
machines. Inputs are on the left and outputs are on the right.

Let int denote the function that takes an input or output of a component
machine P or M and projects it onto the portion connected to the other component
machine. This function represents internal connections within the composite. We
can form a composite of any two machines for which such an int exists.

Let ext denote the function that takes an input of a component machine, and
projects it onto the portion that does not get connected. This function represents
external inputs that the composite receives from its environment.

In this case, the set beh(PM) will be beh(P) x beh(M). The set ins(PM) will
be ext(ins(P)) x ext(ins(M)).

We can let 11p denote a projection function that takes ins(PM) to ext(ins(P))
and similarly takes beh(PM) back to beh(P). Similarly, IIM can take ins(PM)
back to ext(ins(M)) and beh(PM) to beh(M).

We can also let IIIBp denote a projection function that takes beh(PM) to the
internally connected portion of beh(P). Similarly, [I'BM can take beh(PM) to the
ir,ternally connected portion of beh(M).

The commutative diagram in Figure 7.2 illustrates these connections.



7.1. DECOMPOSITION 149

extm4M

xins

accep ins

Figure 7.2: Composition of two machines. This commutative diagram shows thelarge number of equivalences that hold when two machines are connected. It
illustrates one of the diffculties of discussing composition: there are many possiblenotations for almost every object.



150 CHAPTER 7. APPLYING THE METHODOLOGY

Behavior of compositions

We have shown how to connect two machines to form a composite, and exam-
ined the resulting structure. We now look at the resulting behavior, in terms of
acceptance. A behavior is allowed by the composite if it is allowed by both com-
ponents. Thus, the connected portion of the input that a component sees must be
equal to the connected portion of the result that the complementary component
produces-just as expected from the wiring diagram of Figure 7.1.

Define the relation agree(vp, v,,) to hold when the two equalities int(vp)

int(IIvM) and int(vM) = int(Ilvp) both hold. This captures the notion that the
connected portions of the component behaviors agree. Thus, the set accept(PM)
can be written as (accept(P) x accept(M)) n agree. If we treat the notation
agree(vp, vM) as the characteristic predicate of the relation, we can also write
the set accept(PM) as { (vp, vM) E accept(P) x accept(M) I agree(vp, V)f).

7.1.2 Behavior of decompositions

Given a composition, we might wish to reason about a component. Our motiva-
tion is that we find it easier to describe computers (which have instructions with
precisely defined semantics) and memory systems (which perform read, write, and
storage functions) than to describe processors. Ultimately we would like to show
that a processor connected to a memory implements a computer, but avoid the
need to explicitly specify all the details of the processor itself.

Definition 30 (Decomposition function) The decomposition function, with re-
spect to M, is the function 1 defined by the following equation.

-(Vc) {vp I VvM E accept(M). agree(vp,vu) 4 (vpvm) E Vc}

Recall that the notation . was defined back in Section 3.1.

Theorem 20 If accept(P) C -1(S) then accept(PM) C S.

Proof: We know that accept(PM) = { (vp, vM) E accept(P) x accept(M)
agree(vp, vM) } and we assume that accept(P) _ -L(S). Thus accept(PM) C

{ (vp, VM) E -L(S) x accept(M) I agree(vp, VM) }. The right-hand side is equivalent
to { (vp, vM) I vp E -L (S) A VM E accept(M) A agree(vp, vM) }. Expanding the defi-
nition of ' we see that this is { (vp, vM) I vM E accept(M)Aagree(vp, vM) A iWMM
accept(M). agree(vp,i'•) = (v,, ýM) E S}. Since vM E accept(M) the condi-

tion of the implication applies, so we can deduce that the set is equivalent to
{ (vp, vM) I VM E accept(M) A agree(vp, vM) A (Vp, vM) E S} which is obviously a

subset of S. a

This result allows us to deduce containment for the composite PM by checking
containment of a component P, using the function h



7.1. DECOMPOSITION 151

7.1.3 Checking decomposed systems

Instead of checking containment directly, we compose the decomposition function
! (p. 150) with the mapping function when we check fragment containment.

While this seems acceptaLkle, one might wonder whether a more elegant re-
sult is possible. In particular, can the decomposition function - be made //-
homomorphic? If so, then since function composition preserves homomorphism,
the entire mapping would be homomorphic.

A simple observation from the formalism proves that this is not possible. The
function ' is similar to a projection function, so it will not be injective (i.e., one-
to-one), and thus will not be homomorphic with respect to the marked string join
operations Uap and LJ,, which appear in the definition of /.

A more compelling argument, however, is that if the mapping were homomor-
phic, by using it we could state that a processor implements the specification of
a computer-eliminating the memory entirely! Clearly, if we could deduce such a
false statement something would be amiss.

Although - is not homomorphic so we cannot obtain an obedience result di-
rectly for a decomposed system, we can obtain a result indirectly. We do this by
applying theorem 20. It states that containment of the component behavior in
the image, under the decomposition function, of the system specification, implies
containment of the entire system's behavior. Thus we can check the component
and proceed as if we had checked the original containment directly.

7.1.4 Applying decomposition

The key to applying decomposition is the decomposition function of Definition 30.
Given a set of computer behaviors, we must find the set of consistent processor
behaviors by "factoring out" the behavior of the memory system. Each aspect of
the computer behavior will be due to either the processor or the memory. Thus,
the first step in decomposition is identifying the aspects of the computer behaviors
due to the memory. These aspects then can be replaced by the their interaction
with the processor>

These interactions will not necessarily be unique. For example, a specification
that two memory locations will be read does not imply either sequencing of the
"read" operations. In the specification of Hector in Appendix B, a "hint" was
added to each statement of the contents of a memory location. This hint was used
to determine the timing of the associated memory operation.

The scope of this work precludes full treatment of decomposition. This area is
ripe for future work.



152 CHAPTER 7. APPLYING THE METHODOLOGY

reset dpt

command -

Figure 7.3: Stack, with "dummy" depth counter

7.1.5 Other applications

Decomposition can be applied in other contexts besides breaking computers into
processors and memory systems. For example, it can be used to verify systems
where the specification is not in reduced form, and it can be used to verify systems
that require an adaptive reset.

Non-reduced specification

Recall the stack circuit which we have been using as an example, and the
stack specification. The stack circuit maintains state for each location in the stack
(i.e., the top of the stack in the first cell, the next location in the next cell, etc.).
However, it does not maintain any indication of the current depth of the stack-
i.e., the number of elements that it is presently holding. Instead, when this stack
circuit performs an operation, it makes every data transfer that would be necessary
in the worst case (a full stack). If no indication of whether the stack is full or empty
is needed, this circuit is a fine implementation of a stack-it avoids maintaining
unnecessary state.

However, the stack specification we have been studying maintains a depth
counter. For this stack circuit, the depth counter is an unnecessary state com-
ponent. (There are other stack circuit implementations, such as a stationary-data
RA.M.-and-pointer implementation [15], which need to maintain this counter.) This
poses a problem for verification: the Checking Theorem (page 137) requires that
the state mapping be distinct. Yet the state mapping must map the abstract spec-
ification state-which includes a depth component-onto the concrete realization
state-which does not include it. Such a mapping cannot be distinct, since it maps
a larger set onto a smaller one.

Fortunately, we can instead map the specification state onto the state of an
augmented circuit, as shown in Figure 7.3, which does include a depth counter,
and then apply decomposition to factor out the depth counter. By doing this, we
verify that the stack with a depth counter implements the specification, but since



7.1. DECOMPOSITION 153

In t Out

Figure 7.4: Circuit requiring adaptive reset. To clear the latch, it must be toggled
if it is not already clear.

the depth counter has no outputs (the dummy cannot speak), omitting it from
our actual circuit cannot possibly affect the circuit's behavior. Hence the stack
without a depth counter implements our specification.

It is instructive to consider why this approach remains valid despite the re-
quirement that, in general, the mapping must be distinct. The states of the stack
without a depth counter can be thought of as representing equivalence classes of
states of the stack with a depth counter. In contrast, in our example illustrating
the necessity of distinction (Figure 6.3), the state space lacked such structure.

it is interesting to note that a similar addition of a depth counter would be
necessary irt order to verify this stack circuit using abstraction techniques, i.e.,
mappings in the opposite direction from ours, such as Bose and Fisher [271. In such
approaches, circuit state is represented symbolically, and an abstraction function
is defined to map circuit state onto abstract system state. Obviously it would be
necessary to maintain the depth as part of the circuit state in order to abstract
from it. Thus, it would be necessary to actually construct a model of this dummy
circuit in order to verify the actual stack. In contrast, our approach does not
require actual construction of the dummy.

Adaptive reset

We can also use decomposition to deal with circuits which have an adaptive
reset (or homing sequence) rather than an ordinary (or "oblivious") reset signal.
A system has an adaptive reset if the procedure for resetting it varies, depending
on its current state. For example, to reset a stack which signals whether it is
empty, we could perform 0 to k "pop" operations, where k is the depth of the
stack, where the precise number of operations is determined by stopping when the
stack becomes empty. A much simpler example is a 1-bit counter (toggle circuit),
which can be reset to 0 by applying a count input if it already stores a 1, and
doing noting if it already stores a 0. Figure 7.4 shows such a circuit built from an
edge-triggered D-latch.



154 CHAPTER 7. APPLYING THE METHODOLOGY

r --------------------
I '
I I I II

Reset I

OutIn II
ID

Figure 7.5: Circuit composed with reset circuit. Saying that a circuit requires an
adaptive reset is actually saying that its environment will behave in a certain way.

Such a circuit cannot be verified by our methodology alone, for we cannot
simply map the abstract input "reset" into the set of all possible circuit reset
sequences. The circuit cannot be reset by using any arbitrary reset sequence. It
must be reset by choosing the proper reset sequence. What we would like is a
mapping that somehow chooses the proper sequence by peeking at the circuit's
state. However, such a function would not be an input mapping--it wmlld be
something else, since it has a dependency on the circuit's state.

The problem is that we do not want simply to specify a mapping-we also want
to describe some behavior-how the environment in which the circuit will be used is
going to act. It is this composition-the circuit plus part of its environment-that
we wish to specify.

Figure 7.5 shows a 1-bit counter with an adaptive reset circuit. We can verify
the counter by decomposing the system and factoring out the reset circuit, namely,
the part enclosed in the dashed line.

7.2 Representational issues

The interesting checks that can be made of a specification-obedience (contain-
ment), conformity, and distinction-all require the representation of sets of marked
strings of the realization. The representation of sets of marked strings can be built
on a representation of sets of states by adding a temporal aspect. A set of marked
strings of states can be represented as one or more marked string of sets of states.
Usually, one marked string suffices.



7.2. REPRESENTATIONAL ISSUES 155

7.2.1 Representation of state subspaces

We now develop a representation for sets of states. During this development we
will evaluate the representation with respect to several properties: expressiveness,
compactness, and the ease of applying operators, checking membership, and check-
ing the subset relation.

The notion of representation is a familiar, fundamental idea. One set can
represent another if there is a bijection between the two.

Partial-order representation

Our first candidate is a partially ordered representation. It is based on the standard
bit-vector representation, extended to a partially-ordered ternary domain. Let the
set of all states be S = {sl,s2,....,sn} where n = 2k. Each of these states an
be represented by an element of Bk where B = { 0, 1 ). In other words, we can
represent individual state, 'y using bit vectors, as usual.

By introducing a partial order on the bits we can represent sets of states.
More precisely, we can represent some of the subsets of S by using elements of
Tk where T -= { 0, 1, X } as folio,%. Define a reflexive relation E as X C_ 0 and
X C 1. Pointwise, this induces a partial order on Tk. Then t E Vk represents
{ s E S It t .s }. (We know that this set can be defined because Bk C Tk.)

Such a representation cannot represent all possible sets of states. (There are
22' sets but only 3 k representatives.) It cannot even represent one particularly
important set: the empty set. This deficiency can be remedied with an augmented
version. If we let T denote 7", we can use as our set of representatives the set T+,
defined to be T U { T } where we have defined t F T to hold for every t.

Such a partially-ordered representation alone is not highly expressive. With it,
we can only represent certain sets. If we think of states as bit strings from Bk,
we can represent only convex sdts. If .- think of the state space as a space, we
can only represent subcubes of the space. An augmented version can represent the
empty set, but there are still many sets that cannot be represented. Thus, this
representation has a significant shortcoming.

However, it also has several attractive properties. First, it is quite compact.
Each (representable) subset can be represented in about the same space as is needed
to represent a single state. Second, if we wish to find the image of a set under
some operator defined on states, we can often find this image easily-provided we
need a conservative answer rather than an exact one. If the operator is expressed
as a vector of Boolean functions, we need only a conservative ternary extension of
the operator. Applying the ternary extension to a ternary vector (which represents
a set) will yield a new ternary vector representing another set. This new set is
not necessarily the exact image of the original set, but it will contain the desired
image.



156 CHAPTER 7. APPLYING THE METHODOLOGY

Third, it is easy to check the subset relation between two sets represented in
this way: simply check the ordering relation, pointwise, on the representations.
Since singletons and elements have identical representations, this also yields a fast
set-membership test.

Since the expressiveness of this representation is lacking, we continue to exam-
ine alternatives.

Image representation

Another way to represent a set is as the codomain of a function. (Coudert [84] was
the first to recognize this as an efficient method of analyzing sequential systems
using BDDs.) If we augment the state set S with an element T to yield S+ =
SU { T }, then we can represent any subset of S as the codomain of a total function.
A function f: D -4 S+ for any domain D, which is not necessarily a surjection onto
S+, represents its codomain U C S+. If we let D be the set of valuations for a set
of variables V, then f(V) is a symbolic expression. Furthermore, f(V) represents
a subset of S, namely {s I 3d E D.s = f(d)}. (It will soon be useful to note that
the logical notation AuP is closely related to the more familiar set-builder notation
{uIP}.)

Representing a set as an image (in particular, as a symbolic expression) is more
expressive than the partially-ordered representation. Provided that we augment
the set S to yield S+, we can represent any set, including 0. The compactness of this
representation depends on the technique used to represent functions or expressions.
It is easy to apply operators, provided that they are given as manipulation of
symbolic expressions. In fact, this forward image computation is precisely what
most people call "symbolic simulation." However, it is not straightforward to check
membership or subset relations.

Combined representations

A combined representation is more useful, for it builds on the strengths of its an-
cestors. If we combine the first two representations, we obtain a symbolic partially-
ordered representation. Thus, we represent each subset of S with some f: D -+ T+.
Then the symbolic representation f(V) represents the set { s I 3d E D.s Q f(d) 1.
If we wish, we can write this set as a logical predicate As(3V.s "7 f(V)). It is often
convenient to abbreviate this as f(V), where the ordering test, the quantifier, and
the lambda-binding are implicit.

A symbolic, partially-ordered representation inherits the advantages of its an-
cestors. It is expressive, since it can represent every subset. It is also potentially
compact: sets which can be represented purely in the partially-ordered representa-
tion are represented as constant functions. It is easy to apply operators, provided
that they can be formulated as symbolic versions of ternary extensions. Finally,



7.2. REPRESENTATIONAL ISSUES 157

we can check membership by evaluating the logical predicate given above. This
predicate involves only the ordering check, symbolic application of f, and quan-
tification.

However, there is no straightforward check for the subset relation. There does
exist a check which is sound. Given sets e(W) and f(V), we can evaluate the
predicate Vw3v(e(w) ] f(v)). Provided only that C is a transitive relation, if this
predicate is true, then so is the predicate Vx3w(x D e(w)) D 3v(x f f(v)), which
expresses the subset relation.'

Finally, a symbolic, partially-ordered representation has one additional advan-
tage. So far, we have let the quantifier in the logical predicate be implicit. If,
instead, we make this quantifier explicit, then we allow the possibility of including
in the representation variables which are free (i.e., not quantified). This will allow
us to reason about symbolic functions (of the free variables) whose values are sets
of states. This will become important when we consider the checking algorithm,
trajectory evaluation.

For these reasons, we will use a symbolic, partially-ordered representation for
state subspaces. The fundamental objects that we will manipulate will then be
vectors of ternary-valued functions of Boolean variables. These objects represent
either state subspaces (if all variables are bound by existential quantifiers) or sym-
bolic functions whose values are state subspaces (if there are also free variables).

Sparse representation One final algorithmic detail is worth acknowledging.
The representation we have chosen is based on vectors of symbolic ternary func-
tions. The nature of this representation combined with the state sets we will be
manipulating will result in most sets being represented by vectors which contain
many instances of the function X (i.e., the constant symbolic function whose value
is always the ternary X). It will be advantageous to let vector elements have this
value implicitly, and note the actual value only when it differs. Thus, we will use
a sparse vector representation, where X is the default value.

7.2.2 BDDs: binary-decision diagrams

Since the state representation we have adopted is based on representing func-
tions, we need a representation for functions. A BDD (binary-decision diagram,
or more properly a reduced, ordered binary-decision diagram) is a representation
of a Boolean function. A few properties of BDDs are useful in understanding the
implementation of the verification methodology.

A BDD is a directed acyclic decision graph obeying certain constraints, which
has been reduced, i.e., all redundancy has been removed. A BDD can be con-

lWe have not been able to determine whether the structure of C implies that this check is

actually complete.



158 CHAPTER 7. APPLYING THE METHODOLOGY

X1 3t2 X3  f(3)

2. 1 1 1 -•

I 1 0 0 X"

1. 0 0 0~ .- 2 x 2

o 1 1 1 X2X
o 1 0 Z. X2 x3X2Xo 01 0

o 0 03 0 3

a. Truth table and decision graph b. No redundant leaves

12 X2 X2

c. No redundant nodes d. No redundant tests

Figure 7.6: Construction of a BDD from a truth table. a. Correspondence between
truth table and decision tree. Just as in a truth table, the variables in a BDD
appear in a fixed order. b. Redundant leaves eliminated. c. Redundant interior
nodes eliminated. d. Redundant tests eliminated, yielding final, reduced graph.

structed from a truth table by representing the truth table as a decision tree, and
then reducing it, i.e., removing all redundancy from the tree.

Each vertex of the graph represents a distinct function, and every Boolean
function can be represented as a BDD. Since for k variables there are 2 k distinct
Boolean functions, this immediately implies that a BDD may have size exponential
in the number of variables.

BDDs are often a good representation for Boolean functions arising in practice.
An illustration of the construction of a BDD from a truth table is shown in

Figure 7.6. The figure provides a good illustration of the properties that often
lead to the compactness of a BDD. In practice BDDs are constructed directly,
rather than from truth tables.

BDDs are not always compact. For certain functions such as integer multi-
plication [501 their size will be exponential in the number of Boolean variables.
However, BDDs are often good for functions that actually arise. For any fixed
variable order, BDDs are a canonical form.

The graph structure of a BDD reflects the Shannon expansion of the function
that it represents. Thus, recursive algorithms that manipulate Boolean functions



7.2. REPRESENTATIONAL ISSUES 159

a a 5

I % El

I, - d - d
I, •I - -

rn 3  4Lg

a. First operand b. Second operand c. Recursive AND operation

Figure 7.7: Example of a the Boolean AND operation applied to two BDDs. The
operation recursively visits pairs of vertices in the operands, beginning with their
roots, and recurring on the "highest" child. Vertices are numbered to illustrate
the structure of the recursion on the Shannon expansion. The result is not always
in reduced form (although in this case it is).

via their expansions can be written as graph algorithms that traverse BDDs. For
example, the calculation of the Boolean AND of two functions is illustrated in
Figure 7.7. Some algorithms that construct BDDs do not yield reduced graphs
directly, but they can be followed by a postprocessing reduction step.

Two important enhancements to the basic BDD improve its effectiveness. First,
if all BDDs within a system are represented as a single shared graph, BDDs are a
strong canonical form: testing Boolean equivalence then requires only unit time.
Figure 7.8 illustrates a small shared BDD graph which represents the operands
and the result of the operation that was illustrated in Figure 7.7. Such a BDD
implementation is an ideal representation for many convergent algorithms, from
fixed-point calculations to event-driven simulation, that require frequent testing
for convergence.

The second important enhancement adds an edge attribute to the graph. Or-
dinary edges continue to have their old meaning, while negated edges indicate
that the vertex upon which the edge is incident should be treated as represent-
ing the Boolean negation of the function that it normally represents. Although
negation edges can reduce the size of a BDD by at most a factor of two, this can
be a significant advantage in a system that often maintains both a function and
its negation-for example, when encoding a ternary-valued function by a pair of
Boolean functions.



160 CHAPTER 7. APPLYING THE METHODOLOGY

aaa
SIt /a

% b

I

I /

Figure 7.8: Shared BDD structure, showing the operands and result of the opera-
tion illustrated in the previous figure.

Variable ordering

The order in which the Boolean variables appear in a BDD sometimes has an
e:-tremely strong effect on the size of the BDD. For example, Figure 7.9 shows
one Boolean function represented with two different variable ordering. In
applications that represent Boolean functions constructed from words of bits, the
best variable orderings are those which are interleaved, as ir Figure 7.9a. We will
make additional remarks on variable ordering later.

Ternary encoding

There is one inconsistency between the symbolic partially-ordered state represen-
tation we discussed at the beginning of this section, and the BDD representation
just discussed: BDDs represent symbolic binary functions, but we need to repre-
sent ternary functions. We will encode each ternary value as a pair of bits. If
we encode the ternary value 1 with the pair 10, the ternary value 0 with the pair
01, and the ternary value X with the pair 11. A ternary-valued function will
then be encoded as a pair of binary-valued functions. For example, the binary-
valued function f(V), considered as a ternary-valued function, will be encoded as
f(V) f(V).

Thus, we have finally arrived at a representation for state sets. A state set will
be represented by a sparse vectors. The vector elements will be symbolic ternary
functions of Boolean variables. The ternary functions will actually be encoded as
pairs of binary-decision diagrams. (If we must also represent the empty set., we
need only slig'atly more machinery, e.g., one additional BDD indicating whether
or not the set is empty.)



7.2. REPRESENTATIONAL ISSUES 161

al

a2 a3£ 3 a3  83

I , j
b2 .. b1  bl P bl

a. Good variable ordering b. Bad ordering

Figure 7.9: Good and bad BDD variable orders for an OR-of-AND function. The
function is I if both bits in any corresponding pair from two -bit words axe both

1. a. Interleaved order. Corresponding bits of different words are adjacent in the
order. b. Separate order. All bits of the first word appear in the order before any
bits of the second word.

7.2.3 Symbolic indexing

It is clear that the preceding representation can be used to represent sets of states.
The representation for some sets of states is almost obvious. For examnple, the
empty set is represented by a symbolic function whose value is the constant T,
and the set of all states is represented by a vector whose value is the constant
XX ... X. The set of states where the first state variable is 0 would be represented
by the constant vector OX ... X. When we reason symbolically, the set of states
where the first state variable is a would simply be the vector aX ... X.

If we consider the lower-level representation of the ternary values as pairs of
bits, the representations are the vectors 11 11 ... 11, 01 11 ... 11, and aTd 11 ... 11,
respectively.

It is instructive to examine this representation for more complex symbolic pred-
icates. For this it helps to have a concrete example. Suppose that the system under
consideration contains 4 bits of state, represented by the vector R, with the least-
significant bit at the right. The universal predicate is represented by the vector
of eight 1'6, 11 11 11 11. The statement R[0] = u is represented by the vector
11 11 11 uU. In terms of the underlying binary decision diagram representation
for Boolean functions, this can be illustrated as in Figure 7.10.

The statement R[a) = u, however, is not quite so straightforward. The first



162 CHAPTER 7. APPLYING THE METHODOLOGY

F431 121J R!l] N0o

Figure 7.10: Representatkot of the predicate R[0] = u, which contains constant
indexing. Unaddressed locations have the value pair 11 (the encoding for ternary
X). The addressed location (location 0) has the symbolic value u. The triangle
represents a BDD whose precise structure we are not interested in. The bubble
indicates a negation edge.

question to ask is what it really means. Although it is clear what is meant to say
that a particular location given by a constant index has some value, it is not obvious
what is meant to say that a general location given by a symbolic index has the
same value. Reflection reveals, however, that what is intended is a conjunction of
conditiohal predicates. Thus, R[a] = u actually refers to Ai(if a = i then R[i] = u)
where i ranges over the locations in array R, and i is a particular constant within
each instance of the conditional expression. In other words,

f 1?[0]=u, if a=0

(R[a] = u) R[1]=u, ifa=l
) R[2]=u. if a=2

R[3]=u, if a=3

It is rather cumbersome to write out the Boolean functions of the encoding of such
a predicate. However, they can be represented clearly in the diagram of Figure 7.11
if we duplicate the terminal 1-vertex to avoid graphical clutter.

Variable-ordering aspects

Examining the illustration of symbolic indexing leads to a very important point:
a distinction must be made between control variables and data variables. Control
variables, such as the variables encoding a in the examples, should appear early
in the variable order. Symbolic indexing effectively constructs a decoder for the
values of these variables. Data variables, such as u. should appear late in the
order. Note that in the BDD representation for the symbolic indexing expression
,?[a] = u. the data variable u appeared only once. If the data variable u had instead
4ppeared at the top of the ordering, it would have occurred multiple times. This
is of little consequence ip this particular illustration, because the data value u is a



7.3. ELEMENTS OF A MAPPING LANGUAGE 163

R(3] R[2] RIll I•0

)q3 F41F11P0

Figure 7.11: Representation of the predicate R[a]= u, which contains symbolic
indexing. Unlike the representation in Figure 7.10, here the addressed location
is given symbolically. The upper part of the BDD representation consists of a
decoder structure that identifies the proper location. Unaddressed locations have
the ternary X value, and the addressed location has symbolic value u. (The triangle
represents a BDD whose precise structure we are not interested in.)

simple expression. However, if it had been a large, complicated one, the difference
in space would have been significant.

7.3 Elements of a mapping language

We have previously discussed how to prove implementation. This required a map-
ping that took configurations of the specification and mapped them onto 2-marked
strings of configurations of the circuits. Here we discuss the requirements for ex-
pressing such mappings from abstract machines to concrete ones. Fortunately, we
already have most of the machinery necessary for such a mapping language: our
specification language SMAL, from Chapter 3. A mapping language needs only a
few additions to SMAL, to map abstract state onto circuit state.

7.3.1 Requirements of a mapping language

The first need of a mapping language is to identify circuit state. For this we intro-
duce a third kind of variitble, which we will call a node name. A node name (i.e.,
the textual element in the mapping language) denotes either a circuit node (i.e.,
an element of the set NR in a switch-level circuit) or a vector or two-dimensioaal
arrays of circuit nodes.



164 CHAPTER 7. APPLYING THE METHODOLOGY

Map nodeDefSec z--,apDefSec

znodeDefSec nodes nodeDet

Figure 7.12: Highest level of syntax of a mapping language. The nodeDef Sec is the
node-definition section. The mapDefSec is the map-definition section. A nodeDef
is a node definition.

The next need is to talk about sequences of circuit operation. For this we
introduce a next-time temporal operator. However, the next-time operator alone
requires frequent nesting, which is cumbersome in practice, so instead we use a
parameterized form where the parameter denotes the number of iterations, i.e.,
the level of nesting.

Our formalism for representing sequences consists of marked strings, and for
that we must introduce marks. Marks can be introduced implicitly by having next-
time and previous-time operators, and introducing positive, integer durations for
operations. Then the "start" mark is implicitly at time 0, and the "next" mark
is implicitly at the time when the duration has elapsed. Finaily, the mapping
language must allow definitions, to be instantiated whenever the matching abstract
primitives occur in a specification. It is with these definitions that the mappings
are actually defined.

Adding these 3imple extensions to SMAL allows it to function as a mapping
language. We simply need the syntax and semantics of the extensions.

7.3.2 Syntax of CAMP: a circuit assertion mapping lan-
guage for pipelines

This section defines the syntax of a mapping language, and should be interpreted
as an extension of the SMAL language syntax defined in Chapter 3.

A mapping consists of a node definition section followed by a map definition
section. A node definition section consists of a series of node definitions, as shown
in Figure 7.12. Each of the node definitions, as shown in Figure 7.13, contains a
new identifier which is the name being defined. It also contains a string structure--
either a string, or a vector of strings, or a rectangular array of strings. The string
structure names the circuit nodes that the node definition is to denote. In this way,



7.3. ELEMENTS OF A MAPPING LANGUAGE 165

nodeDet EreshIdent string

Figure 7.13: Syntax of node definitions. A freshldent is a "fresh" identifier, i.e.,
one not already in use.

mapDefSec lot mdefr in

Figure 7.14: Syntax of mapping definition section. A mdefn is an auxiliary defini-
tion. A mapDef is a map definition.

the set of identifiers used in the specification language, and the lexical structure of
this language, can be decoupled from details of the CAD system with which the
circuit is defined.'

A map definition section consists of a series of map definitions, as shown in
Figure 7.14. Optionally, a set of auxiliary definitions may be defined and used
in the map definition section. An auxiliary definition may be either an auxiliary
definition allowed in SMAL, or one which takes parameters denoting nodes, as
shown in Figure 7.15.

2 1t would be tedious and error-prone to actually write this portion of the mapping for a large

array of circuit nodes, such as a register file. It is intended that this portion would be mechanically
generated by some other program. This delegates the problem of string manipulation to some
other language, instead of incorporating string manipulation into CAMP.



166 CHAPTER 7. APPLYING THE METHODOLOGY

mdefn defIdn

freshldent 1-:type

node

i forn

Figure 7.15: Syntax of auxiliary definitions. A defn is a definition, from SMAL.
An if orm is an instantaneous formula. A tf orm is a temporal formula.

Figure 7.16 gives the syntax of map definitions. Each map definition may also
have its own auxiliary definitions. A map definition must be given for each system
variable defined in the SMAL specification. A map definition consists of a header
and a body. The body is simply a temporal formula. The header takes one of two
forms, depending on whether the system variable being mapped is a scalar or an
array. Each syntax is similar to the syntax for using the respective kind of system
variable when constructing a primitive formula in SMAL. Thus, the header for
the mapping of a scalar system variable binds one parameter, while the header for
the mapping of an array binds two parameters: an index parameter and a value
parameter.

A temporal formula is constructed from instantaneous formulas. We present
instantaneous formulas first, in Figure 7.17. An instantaneous formula can take
several forms. There are two primitive forms. It can assert that a scalar node
variable has a value. Alternatively, it can assert that an indexed location within a

array node variable has a value.
There are also several combining forms: conjunction, disjunction, the instanti-

ation of an instantaneous formula abbreviation that was previously defined using
a local definition, an cxistentially quantified instantaneous formula, or a case anal-
ysis.

Instantaneous formulas are used to construct temporal formulas, which also
can take several forms, as shown in Figure 7.18. They can be created by combin-



7.3. ELEMENTS OF A MAPPING LANGUAGE 167

mapDef lot mdefn in

5 e-

anm E freshldent I epor -

Figure 7.16: Syntax of map definitions. A svname is a scalar variable name. An
avname is an array variable name. A tempForm is a temporal formula.

ing other temporal formulas using conjunction or disjunction, by instantiating a
temporal abbreviation, or by an existential quantification. The primitive way of
creating a temporal formula is to assign a time (or range of times) to an instanta-
neous formula. Establishing the duration of an operation by introducing a marker
also creates a temporal formula. Finally, temporal formulas can be constructed by
case analysis.

Example Figure 7.19 gives an example of a mapping expressed in this notation.
The abstract latch specification is in terms of an abstract operation determined
by the state variable "op," an abstract input "D," and an abstract state value
"Q." The mapping expresses the signal values on circuit nodes, over time, that
correspond to values of each of these abstract state variables. Note that the choice
of operation dictates the duration of the operation, i.e., a load operation takes
longer than a hold operation. (This is not a requirement of this particular circuit,
but it illustrates a capability of the methodology.)

7.3.3 Semantics of the mapping language CAMP

We can define the semantics of the mapping language such that a program in the
language denotes a mapping from the states (or configurations) of a specification
machine onto sets of marked strings of circuit states. For brevity, here we give the
semantics of only an essential subset of the mapping language.



168 CHAPTER 7. APPLYING THE METHODOLOGY

iform• - snode exp

Sanode [ expr epr.. •

eifor ifiormm

Sifo -m A i for-m

Siabbrev •(• expr • nd

ele i form -

Figure 7.17: Syntax of instantaneous formulas. A snode is a scalar node name.
A expr is an expression. An anode is an array node name. An if orm is an
instantaneous formula. An iabbrev is an instantaneous abbreviation, i.e., one
defined as in Figure 7.15. A bexpr is a Boolean expression.



7.3. ELEMENTS OF A MAPPING LANGUAGE 169

tiforin tform A tforrn

next 0 number

cas. bexpr -> tform

Figure 7.18: Syntax of temporal formulas. A ta~bbrev is a temporal abbreviation,
defined as in Figure 7.15.



170 CHAPTER 7. APPLYING THE METHODOLOGY

nodes

nL: "L"; // latch signal ("clock")

nD: "D"1; // input
nS: "S"; t / storage capacitor
nQ: "Q" /1 output

maps
(op = o)
= case o = load ->

nL = 0 Q -1...0 /\

nL = 1 1...2 /\

nL = 0 3...4 /\
next 0 4

else ->

nL = 0 -1...2 /\
next C 2

(D=b)

=nD b 0 2...3

(Q=b)

- (nS = b /\ nQ = b) 0 0

Figure 7.19: Mapping of the latch specification of Figure 2.8 onto the circuit of

Figure 2.1, using the timing of Figure 2.2.



7.3. ELEMENTS OF A MAPPING LANGUAGE 171

Notation We will represent the set of nodes in the circuit by a set WV of wires
(for convenience, they can be strings, though their only essential character is that
they be distinct elements). We will also use F to denote the set { 0, 1 }lWI, the
set of possible circuit states or configurations. The set 0 will denote the set of
functions { 1: W -- { 0, 1 } } which assign values to the wN;res. Note that r and
0 are isomorphic. That is, a circuit state assigns a bit to every wire. As in the
definition of SMAL, E will represent an environment. Also as in SMAL, 0 will
represent a valuation of the specification's system variables-i.e., a specification
configuration or specification state. An environment E will map the name of a
node aggregate to either a vector of wires or an array of wires.

Node definitions A string structure denotes either a vector or array of strings.
(In turn, the strings name circuit nodes.) An aggregate of circuit nodes is assigned
a name by a "node definition." The semantics of a node definition are given by
the following equation.

[[name : strStruc]](E, W) = (E: name f-4 [[strStruc]], W U elts([[strStruc]j))

Here the function "elts" produces a set of the elements of a string structure.
In other words, this equation says that a node definition augments the current
environment 3 by mapping the new name to the structure it is to represent, and it
augments the set of wires with the new wires.

A sequence of node definitions works as expected: the last node definition is
evaluated in the environment given by evaluating the earlier ones first.

[[nodeDefs ; nodeDefll(E, W) = [[nodeDefl]([[nodeDefs]I(E, W))

The entire node definition section is evaluated relative to the current environ-
ment. It evaluates the node definitions, beginning with the empty set of wires.

[[node nodeDefsj]( E) = [[nodeDefs]]( E, 0)

Temporal formulas A temporal formula denotes a set of marked strings over
circuit state, and is evaluated relative to an environment, a set of wires, and a pa-
rameter assignment 0. (A parameter assignment is analogous to a case assignment
in the semantics of the assertion language, for which we also used the letter 0.)
Temporal formulas are constructed by two means. First, a temporal formula can
be constructed by assigning an integer (a time) to an instantaneous formula.

f {r E r'I r = 'sand st E [!iform]](E,W, 0)}, if t >0
[[iform~t])CE,w,¢) = {r e F', Ir = s' and so E [[iformr](E, W,0)}, if t < 0

3 CAMP mappings are intended to follow SMAL specifications. The initial environment E is
the one "left over" from the semantics of the SMAL specification.



172 CHAPTER 7. APPLYING THE METHODOLOGY

Here s is some string in Ft, and si denotes the i-th symbol in s. That is, such a
temporal formula restricts the allr'owable configuration only at a particular time.
Furthermore F = { 0, 1}1w1 and P' s the set of marked strings { r E r*` I r = n }

Second, a temporal formula which denotes a marker can be constructed.

[[next@t]l(E, W. ) = { r Er 3s E r t .r = s'}

Here Ft is the set of strings of length t, and Fr't is the set of 1-marked strings of
length t (discounting the marker). This form is used to assign a duration to an
operation. Note that this is defined only for t > 0. (An operation can't have a
negative duration.)

Temporal formulas can be combined, for example by conjunction, when both
formulas represent sets of 2-marked strings or both represent sets of 1-marked
strings.

4

[[tform /\tform2]](E, W,V ) = extrl[[tIo, ]](Ew 0,)j([[tform 2]](E, W, 0p))nextll[ttfioll(E,W;¢ll1([[tforml]]( E, W, 0))

Here "ext" is a function which extends a set of marked strings (see definition 13.,
p. 61). The notation Ilzxi refers to the measurements of marked string x (see
definitions 11 and 13 for details).

Case restriction can also be applied to temporal formulas.

[[case bexpr - > tform]] = {xtf.fl 0 J](EW 4fJ( if [[bexprf](0) = 0
[[tform]](E, w, p), if [[bezprJ](0) = 1

Instantaneous formulas The basic constituent of of a temporal formula is the
instantaneous formula, which denotes a set of circuit configurations. Recall that
there are two kinds of node aggregates: vecto-s and arrays. A primitive instanta-
neous formula contains a node aggregate (i.e , a vector or array of wires) and one
or two expressions. The meaning of an in.cantaneous formula involving a vector
of wires is defined to be the set of circuit configurations in which the values on the
nodes in the vector encoding the integer denoted by the expression.

[[wvect = exprj](E, W, €)

={: W -" B I 2i -(1 3j(E(wvect)))) =([expr]J(0)}
(j<JE(tvvect)J

Here fIj denotes a projection function which extracts the j-th wire from the vector.

4 When one formula represents a set of 1-marked strings and the other represents a set of
2-marked strings, the set intersection is replaced by overlapped concatenation (extended to sets),
with the 1-marked strings on the left.



7.3. ELEMENTS OF A MAPPING LANGUAGE 173

The meaning of an instantaneous formula involving an array of wires is defined
similarly.

ffwarrayfindex] = val]](E, W, €)

= {( jE~ar 2iy 2' O(1L,[[indezfl(0)(E(warray)))) = }lf~o
Here the projection function IHj,k selects the element in column j and row k of the
array.

Case restriction can also be applied to instantaneous formulas.

[[case bexpr - > iform]](E, W, ¢) = r if [1bexpr]](k) = 0
([[iformJ](E, W, €), if [[bezpr]](0) = 1

Mappings Mappings map configurations of the specification to sets of marked
strings of the circuit. We have already defined temporal formulas so that they
denote sets of marked strings of the circuit. We define the mappings in terms
of the system variables of the specification. Recall from the semantics of the
specification language that there are two types of system variables: scalars, and
arrays. Recall also that a configuration of the specification is represented as an
assignment 0 to the system variables of that specification.

We will define the meaning of a mapping involving a scalar system variable rel-
ative to an environment E and a set of wires W. We let it denote the function that
maps a specification state ik to the set of marked strings given by the denotation
of the temporal formula, evaluated in an environment including an assignment €
which assigns, to the parameter, the value of the state variable according to the
specification state 0. The formalism is actually easier to read:

[[(svname = param) = tform]l(E, W) =

A, ([[tform]](E, W, 0: param i-+, (svname))

A mapping involving a system variable that denotes an array is slightly more
complicated. Recall that an array is a vector of scalars. Thus, a mapping involving
an array must in some way involve all of those scalars. We will define the meaning
of such a mapping to be a function that maps a specification state 4 to the set of
marked strings given by intersecting the set given for each of the scalars i. The set
given by each scalar i is given by evaluating the meaning of the temporal formula
with a particular assignment. It assigns, to the parameter, the value given by
selecting that scalar out of the array. It also assigns, to the index, the value of i.

[[(avname[index] = param) = tformll(E, W)

=X0 (EI( n(ame)I [[tformjJ (E, W, 0: param i-+ HI,'(avname): index -+i))
avn(.m~



174 CHAPTER 7. APPLYING THE METHODOLOGY

The meaning of a sequence of mappings is defined to be the mapping that
produces the intersection of the sets that the individual maps produce.

([maps ; map]](E, W) = AO (([[maps]](E, W)(0)) n ([fmap]](E, W)(0)))

The entire mappings section simply denotes wiat the sequence of maps denotes.

[[maps maps]](E, W) = [[mapsll(E, W)

Thus, it denotes a function mapping specification states to 2-marked strings of
circuit states.

Distinction of mappings As discussed earlier, mappings must be distinct. We
have already observed that there are two possible approaches to establish distinc-
tion: to check that entire mappings are distinct, or to guarantee that they are
distinct by their construction.

Distinction is not a property of great concern, because in practice most map-
pings are distinct. This is reflected in the mapping language. Simple mappings
(those that simply assign values, unchanged, to circuit nodes) are distinct. Map-
pings involving injective functions over domain values are distinct. The conjunc-
tion of two distinct mapping that refer to disjoint sets of circuit nodes is distinct.
Symbolic indexing, since it can be expanded into a series of such conjunctions, is
distinct. There are only a few forms, such as case analysis, that lead to mappings
that are not distinct. Thus it might be possible to show that mappings are distinct
by checking only a few parts of the mappings.

On the other hand, it might be more straightforward to check distinction of
entire mappings. Let I be the mapping we wish to check i, and a, and a2 be disjoint
sets of variables representing two abstract states. Given symbolic representations
of circuit state, such as those we have discussed, we could form a symbolic Boolean
function representing the equivalence I(a.,) -- I(a 2). If this function is equal to
the Boolean function representing the equivalence a, = a2, then the mapping I is
distinct.

Developing and evaluating ways of checking or otherwise ensuring distinction
of mappings seem like a straightforward direction for future work.

We can now express specifications and mappings. Once we fill the remain-
ing requirement-for a tool implementing the methodology-we can apply the
methodology to verify circuits.

7.4 Trajectory evaluation

The previous sections described a representation for sets of marked strings, and
discussed how to map abstract specifications onto such representations. As might



7.4. TRAJECTORY EVALUATION 175

be suspected, the representation of state sets as symbolic partially-ordered vectors
was not an arbitrary choice. Instead, this representation was chosen to enable us
to check assertions using trajectory evaluation.

It is not our intention to present the comprehensive foundations of trajectory
evaluation. However, some understanding of the checking algorithm will be useful
in evaluating the forthcoming case study.

Symbolic ternary trajectory evaluation, or simply trajectory evaluation, is an
algorithm for checking a symbolic, operational model against an implicative asser-
tion in a restricted next-time temporal logic [56, 212]. The restricted form of the
logic is an important factor in the checking algorithm. Thus, it is first necessary to
understanding this logic. As in any logic, we will have syntactic elements including
combining forms, primitives, and variables to inhabit the primitives. Statements
in the logic have abstract syntax given by the fir-' column of the following table.

F H F aF OKF
(syntax) (validity) (defining value) (validity function)

N = 0 node N has value 0 XX...O... X 1
N = 1 node N has value I XX... 1 ... X 1aF, if b b A
b-+F b=0or HF {X,...X, otw. vOKF

F1 A F 2  HF1 and HF 2  ap, I aF2  OKF, A OKF2 A (aF p T)
after next

XF if • F state transition XX ... X; aF OKF

FA•;Fc

In these expressions, N denotes a. node of the circuit, b is any Boolean expression
over an implicit set of Boolean variables, and F (possibly subscripted) is any
formula. The first five forms define formulas. The last form defines an assertion.
Au assertion is a special object.

The basic element of the specification logic is the primitive formula (the first
two lines of the table). A primitive formula simply says that some specified state
variable (i.e., a circuit node) has a particular specified value (either 1 or 0). For
example, if a circuit has a wire called "in," the formula in=O is a primitive formula.
In terms of our representation for sets of states, which appear in our table as
defining values, a primitive formula is represented by a vector which contains the
ternary X value in all locations save one: the location corresponding to the node
that occurs in the formula. This location contains the value that occurs in the
formula.

More interesting formulas are constructed from primitive formulas using three
combining forms: case restriction, conjunction, arid the temporal operator. The
first of the combining ;orms is case restriction. Case restriction simply says that a
formula need hold only in certain cases. A case is a valuation for the Boolean vari-
ables in the formula, which are called the case variables. Note that case restriction



176 CHAPTER 7. APPLYING THE METHODOLOGY

causes the validity function OKF to tend toward 1, and introduces a case analysis
into the defining value. 5

Conjunction has the expected meaning. The representation of conjunction is
calculated as follows. Recall that the representation for a set of states is defined
in terms of a partial order. The representation of a conjunction is computed by
taking the pointwise join with respect to the partial order, of the representation
of the conjuncts. The validity function reflects whether the result of the join is T.
the representation of the empty set.

The temporal operator expresses the passage of time. A formula f is a state-
ment about the present time-the present state of a system. A formula involving
the temporal operator, Xf, is a statement about the future-the next state. Re-
peatedly applying the temporal operator allows the statement of conditions about
times further into the future. Combining repeated temporal operators and con-
junction allows the statement of conditions about sequences of states. For example.
the statement f0 A X(f1 A (Xf 2 )) holds if fo holds presently, and f1 will hold at
the next state in the future, and f2 will hold in the state following that.

Formulas without the temporal operator are instantaneous formulas. Each
instantaneous formula has a single defining value which is a symbolic function. A
defining value uses the representation defined in section 7.2 to compactly represent
the set of circuit states satisfying an instantaneous formula.

Any formula can be written in normal form, where it consists of a series of
instantaneous formulas: one for the present state, another for the next state, and
so on until the maximum nesting of the temporal operator is exhausted. Thus, a
formula such as fo A X(f1 A 'Xf 2)) can be represented as a sequence of defining
values, a0, a,, a 2. They in turn represent a sequence of sets of states. By a shift of
perspective, this can be thought of as a set of sequences of states, or a set of paths
in the state space of the system.

Trajectory evaluation is a way of checking an assertion. An assertion is a pair of
temporal formulas: an antecedent A and a consequent C. (These were written FA
and FC respectively for consistency within the table above.) Each of the formulas
expresses a set of paths through the state space of a system. An assertion states
that if the system follows a path in the antecedent, then it follows a path in the
consequent.

The trajectory evaluation algorithm makes use of symbolic simulation and the
sequence of defining values that corresponds to a formula in normal form. Tbe
normal form of the formula, in the context of an assertion, is

Ao A(XA, A( ... A A,)...) =:>.CO A(XC,^A(...AC,,) ... )

5 0f course, this case analysis is represented symbolically.
6 Recall that in order to represent the empty set, we augmented the set with an element T.

This ensures that the join is always defined.



7.4. TRAJECTORY EVALU-ATION 177

The trajectory evaluator performs a symbolic simulation of the circuit. initializ-
ing all simulated system state to the ternary X value--the representation of all
possible binary states. It iterates through the instants of time i = 0. .... n cor-
responding to the assertion. At each instant i, it applies the instant's antecedent's
defining value, aA, as a constraint on the symbolic simulation state. by using the
join operation. Meanwhile, it checks that the state remains in accord with the
instant's consequent's defining value. ac,. by testing the partial order. As the eval-
uator proceeds. it maintains a Boolean function OK that indicates the cases (i.e.,
assignments to the Boolean variables) in which the circuit's behavior agrees with
that specified by the assertion.

This Boolean function is constructed by maintaining three other functions:
CK., OKT, and OKc. As the verifier performs symbolic simulation and attempts
to apply the constraints determined by the assertion's antecedent. it may find that
it cannot apply the constraints because they are inconsistent with circuit state.

For example., if some node is driven to the value 0 because of circuit operation.
and the antecedent asserts that the node has the symbolic value v, the constraint
can be applied only in the case that the variable v is assigned the value 0. The
function OKT records such cases-the cases in which the constraints actually can
be applied. Those cases in which the constraints cannot be applied are termed
antecedent failure cases. The function OKA records the conjunction of the validity
functions OKA, over all instants i. The function OKC records the cases in which
the checks determined by the assertion'sz consequent are actually met. The final
Boolean function OK is found from the equation OK = (OKA A OKT) V OKc.
That is, the final Boolean function represents an implication. It is the ultimate
result of trajectory evaluation: if it is the constant function 1 then the circuit
satisfies the assertion for all cases.

In addition, as the verifier proceeds through the assertion, whenever it finds
a case where the antecedent cannot be applied (such as when v has the value 1
in our example), it performs an implicit case restriction, so that it simulates only
the valid cases. This is because, when the antecedent cannot be applied (i.e., in
the antecedent failure cases), the function OKT will have the value 0, i.e., the
function OK must have the value 1. The circuit need not be simulated any longer
for such cases-the result of the trajectory evaluation procedure has already been
determined. Consequently, an implicit, global case restriction is performed, using
OKA as the guard.

As we will see, this automatic global case restriction has important implications
for the efficiency of the trajectory evaluation process.

It also has important implications for the reliability of verification. When the
antecedent fails, the assertion succeeds. This is fine if the condition that led to the
antecedent failure does not correspond to expected circuit operation. For example,
if an asssertion's antecedent states R[a] = u A R[b] = v the antecedent will fail in
the case a = b but u X v. This is fine, since it reflects a condition that would



178 CHAPTER 7. APPLYING THE METHODOLOGY

never actually arise: one register holding two different values simultaneously. This
antecedent failure is simply an artifact of the way that the specification is stated.

On the other hand, suppose that a node s that is supposed to store state has
actually been connected to ground. An assertion's antecedent of the form s = v
would then fail in the case v = 1. Since the antecedent fails, the assertion succeeds.
The statement "if the circuit stores a one, then..." is vacuously true because the
circuit never stores a one on the grounded node.

In order to avoid this problem. we can require that the antecedent never fail
in the circuit when it would not fail at the abstract level. This allows antecedent
failure of the first type while avoiding that of the second.

It is easy to see that it is always possible to avoid antecedent failure. One need
only take the Boolean negation of the failing conditions and apply it as a case
restriction. If adopt this as a convention, we can avoid antecedent failure entirely.
at the cost of clouding the specification with more case restriction.

7.4.1 Efficiency, global case res'riction, and antecedent
failure

A global case restrictibn is one which is applied to an entire assertion (to both
the antecedent and the consequent). Global case restriction can be thought of as
limiting the values that the case variables in the specification are allowed to take
on. In contrast, the effect of global case restriction on the simulated circuit state
can be seen from the defining value for case restriction in the table from the last
section. In the cases that are "thrown out" by the case restriction, the defining
value is X-the undefined or universal system state-and in the remaining cases,
the defining value is unchanged. This distinction is maintained symbolically. Thus,
the representation for a state involving a case restriction must "test" the Boolean
variables in the set of support' for this guard, for every bit of state in the system
that is not X.

Since these Boolean variables appear in every state bit in the circuit, they have
an important effect on the efficiency of the symbolic simulation during trajectory
evaluation. First, if there are many such variables, and every state bit must test
them, the BDDs can "blow up," i.e., require too much space. Second, if they are
at the top of the ordering, every symbolic manipulation must traverse the vertices
that test them. This will slow the simulation down.

Unfortunately, antecedent failure interacts particularly poorly with symbolic
indexing. Consider the example of symbolic indexing given earlier, R[a] = u.
Suppose that the register file R is a component of a system which can perform

'The set of support for a Boolean function f(V) over a set of variables V is the smallest
subset of V whose valuation must be known in order to determine the value of f for any arbitrary
valuation. In other words, it consists of the variables that f actually depends upon.



7.5. VERIFICATION TOOL 179

operations on two register values. An assertion describing such an operation will
be of the form

R[a] = u A R[b] = v 4 R[c] = f(u, v)

where a and b are source addresses, u and v are operand values, c is a destination
address, and f(a, b) is the result of the operation. Such an assertion will cause
antecedent failure for the case where a = b but u $ v. All of the variables in a,
b, u, and v will participate in the antecedent failure. Consequently, all of these
variables will appear in practically every bit of state in the system.

The variables u and v can be eliminated from the antecedent failure by rewriting
the assertion using case restriction, as follows.

R[al = u /\ ((a 7(R[b] = .., ,a r ' = ( I v. if a : b
""' 1- U, otw.

This eliminates the antecedent failure, at the cost of introducing a case restriction
involving a and b. This has the disadvantage of drawing efficiency issues into the
high-level specification-precisely the place where we would like to be as abstract
as possible-but at least it does help reduce the size of the BDDs.

However, the remaining variables, those for a and b, do appear in the case
restriction. Because they are addresses used in symbolic indexing, they should
ideally appear at the top of the variable ordering. But because they appear in the
case restriction, they should ideally appear at the bottom of the variable ordering.
Of course, they cannot occur twice, so one or the other must be chosen. In practice,
they work better at the top of the ordering.

7.5 Verificatior, tool

Having discussed the trajectory evaluation algorithm, it is appropriate to make
some remarks on a tool implementing the algorithm and verification methodology.

7.5.1 Usability

A verification tool, or verifier, must encompass several essential features. First, it
must correctly implement trajectory evaluation. Second, it must provide a sym-
bolic notation for writing specifications and mappings, and a way to apply the
mappings to the specification to yield simulation patterns.

The original prototype of the methodology obtained each of the essential fea-
tures from a separate program. The original implementation of trajectory evalua-
tion was written as a small set of modifications to the Cosmos symbolic simulator.
This allowed the simulator to read formulas in the primitive temporal language
and check circuits against them.



180 CHAPTER 7. APPLYING THE METHODOLOGY

The original implementation of the specification notation and mappings was
written in an object-oriented Lisp dialect called T [219]. This program took high-
level specifications and applied mappings to them. expanding them into the prim-
itive form accepted by the trajectory evaluator. It was quickly discovered that the
this approach was not ideal. It could be workable when given a good specification
and a correct circuit to check. However, when the circuit and the specification
failed to agree, debugging was difficult. It was particularly cumbersome to relate
a failure of trajectory evaluation back to the corresponding part of the original
specification. This made it evident that attention to debugging would be needed
to apply the methodology to large circuits.

A revised verifier addressed this issue. It was constructed as a single program.
based on a combination of the Cosmos symbolic simulator and a Scheme s imple-
mentation. The implementation of the verifier was kept flexible and extensible,
reusing existing code from the original prototype when possible, and using Scheme
representations unless efficiency dictated otherwise.

The specification language was embedded in Scheme. The runtime binding of
Scheme made it easy to modify specifications when debugging them. In contrast,
the static binding of a traditional compiled language, or an interpreted language
like ML [199], would have been less convenient.

Although much of the underlying verification engine, comprising trajectory
evaluation and symbolic simulation, is compiled, the user interface interpreted, for
easy extensibility. The basic design of its user interface is an interactive postfix
language. It is oriented toward the immediate execution of commands, with a
limited but useful iteration facility.

The result of running the verifier is an indication, for each assertion, of whether
the circuit implements the state transition specified by the assertion. If the circuit
fails to meet the specification, the checker provides the Boolean function OK
indicating the failing conditions.

This Boolean function is the starting point for debugging. The first step of
debugging is to find a falsifying case, using a verifier command provided for this
purpose. A falsifying case is an assignment to the Boolean variables under which
OK is 0. The falsifying case can be used as a restriction on symbolic system
state. This simplifies the appearance of symbolic values in the simulated circuit.
If further simplification is desired, the falsifying assignment can be augmented by
assigning additional values to additional variables.

Once a failing assignment that gives a satisfactorily simple appearance to sys-
tem state has been found, the structure of the circuit can be explored and the
values on nodes examined until the cause of the failure is determined. Failures, of
course, may be caused by specification errors or circuit errors, or they may be false
negatives due to the conservatism of the simulation model. The stack-based com-

8 Scheme is a dialect of Lisp.



7.5. VERIFICATION TOOL 181

mand language makes it easy to traverse the circuit, and mark interesting areas
by pushing them onto the stack, so that they cait be later revisited and explored
more fully.

Alternatively, Boolean or vector expressions in the specification language can
be evaluated under the current restriction, to explore the specification.

Much of the implementation of the verifier is coded in Scheme. So as to retain
easy access to the facilities of the Cosmos simulation system, the Scheme system
used is the Scheme->C system [12], an implementation that adheres to the Scheme
programming language whenever possible, but compiles into C code which is then
processed by the operating system's native compiler. This requires a few devia-
tions from the Scheme standard with respect to tail recursion, but the language
is otherwise complete Scheme. This allowed a portable implementation of a com-
plex symbolic computation system, and compatibility with the existing Cosmos
switch-level simulation system.

The advantages of doing programming in a language that provides an interpre-
tive execution environment, particularly for exploratory research programming,
are well known. Another advantage of programming in a dialect of Lisp is auto-
matic garbage collcction. Since Scheme->C generates C code, it employs a garbage
collector that allows ambiguous roots. In practice this worked well.

Wentworth [242] discusses some of the drawbacks of such a garbage collector.
The chief one is of inadvertent capture: if the collector scans a pointer which
appears to point to a large data structure in the heap, but which is actually a
value instead of a pointer, the large data structure must be retained in memory.

This capture phenomenon was not observed in the verifier. The verifier is struc-
tured so that various portions of the Cosmos simulator are called as subroutines,
but these routines very seldom make calls to Scheme code. The garbage collector
will only be invoked while Scheme code is executing. Thus, the garbage collector
is likely to be invoked when the runtime stack contains only Scheme data, so that
most bit patterns that look like pointers into the heap will in fact be pointers into
the heap.9

7.5.2 Visualization aids

Writing the text of a high-level SMAL-style specification is relatively straight-
forward. Writing the CAMP-style mapping is more difficult, due to the need to
express temporal behavior. Mappings can be most easily written by first sketching
out timing diagrams and then writing the formal notation. The verifier provides
commands for drawing timing diagrams from mapped assertions. Visually compar-
ing diagrams generated by the verifier against the original sketches can be helpful

9Moreover, the MIPS C compiler on the DECstation computer we used for our experiments
has a strong register allocator, so the values held in registers are likely to be useful current values,
rather than bit patterns left over from long ago.



182 CHAPTER 7. APPLYING THE METHODOLOGY

in locating inconsistencies. Several of the figures in the case study section, for
example Figure 9.3, are direct illustrations of this visualization facility.

In addition, the verifier can be instructed to display a timing diagram as it
performs the trajectory evaluation, one unit step at a time. If a restriction has
been established in order to debug a circuit and specification, the diagram dis-
played during trajectory evaluation is simplified according to the restriction. Such
diagrams can be quite useful during debugging. They illustrate many aspects of
circuit operation. For example, Figure 9.8 shows how, during an ALU operation,
the less-significant bits of the result bus resolve to binary values before the more-
significant bits do.

7.5.3 BDDs and efficiency

A useful visual representation for a BDD is its profile. A profile is a histogram
indicating the number of BDD nodes that test each Boolean variable.

The verifier draws profiles in X windows as histograms with horizontal bars
centered horizontally, yielding symmetrical displays somewhat like the ink blots of
a Rorschach test. If a Boolean function is represented efficiently by a BDD, its
profile will be thin-often it will look like a vertical chain of beads. This typically
indicates that at each bit position, each Boolean variable is tested only a few times.
In contrast, a poor ordering yields a BDD with a fat profile ("neckties," "birds,"
or "bats"). This would indicate that many nodes tested the variables in the fat
area.

The ability to view profiles of BDDs is helpful in tuning the performance of
verification. Suppose that arbitrary binary values must be asserted onto some
control lines (e.g., a microcode address register) early during a sequence, and then
at some later point a particular set of binary value must be applied to those
lin~es (e.g., a particular microcode entry point). Should the Boolean variables
representing the arbitrary Boolean value appear at the top or the bottom of the
variable order? Suppose they are assigned to the beginning (top) of the order.
After verifying some aspect of system operation, the BDD space requirements
would be rather high. Examining profiles of BDDs that should be dissimilar would
reveal that they share a common element at the top of the ordering: every BDD
in the system must test the Boolean variables mentioned earlier, to see if they
correspond to a microstate whose successor is the state represented by the binary
values of the microcode entry point. In contrast, placing the variables at the end
(bottom) of the order results in two terminal sub-DAGs. If the variables were not
present, the other BDDs would terminate in 0 or 1. With them present, the other
BDDs instead terminate in one or the other of the sub-DAGs.

Instead of introducing a test on the Boolean variable for every BDD in the
system, most of the BDDs in the system will share a single test.

For example, the change in ordering discussed above was motivated by a quick



7.6. RELATED WORK 183

glance at a few profiles while verifying a "store flags" instruction of the Hector
microprocessor. It reduced the number of BDD nodes by a factor of 6, and the
total BDD storage requirements, BDD cache sizes, and CPU time required by a
factor of 4. As explained earlier in section 7.4, the verifier performs best when the
Boolean variables associated with antecedent failure appear at the bottom of the
variable order.

7.6 Related work

Bryants survey of binary-decision diagrams [54] is recent and comprehensive, so
we will not repeat such discussion here.

Coudert and colleagues [843 recognized the utility of representing sets by means
of codomains of functions using BDDs, and developed algorithms for manipulating
such representations within algorithms to compare state machines.

Symbolic indexing was introduced in [15] and has been generalized by Hu and
colleagues [135]. An initial formulation of trajectory evaluation [571 has been used
previously to verify stacks, memories, and simple pipelines including a data path
and an accumulator [47]. Both pipehines bypassed the read-after-write hazard.
A more complete formulation is in progress [212]. The present work is the first
application of trajectory evaluation to a large pre-existing circuit.

7.7 Chapter summary

This chapter has discussed several issues related to the application of the method-
ology. First, it discussed decomposition, a way by which a computer specification
could be written but a processor verified. This was accomplished by defining a
decomposition function parameterized by the memory system, and showing that if
the processor's behavior was allowed by the result of applying the decomposition to
the specification, then the behavior of a computer constructed from the processor
and a memory system would be allowed by the specification.

Next the chapter turned to representational issues. It discussed how to rep-
resent sets circuit states using functions onto partially ordered domains. Then it
showed bow this could be used to represent sets of marked strings of circuit config-
urations. After discussing how to represent marked strings, the chapter discussed
how to express them, by defining the abstract syntax and essential semantics of a
language for mapping assertions onto circuits.

Finally, it turned to the implementation of the verification itself. It outlined
the trajectory evaluation algorithm and discussed some practical concerns in im-
plementing a useful verifier.

We have now discussed a methodology for verification and some of the issues



184 CHAPTER 7. APPLYING THE METHODOLOGY

regarding its implementation. It is now time to apply the methodology to verify a
circuit.



Part III

Case study

185



Chapter 8

Hector specification

This chapter begins the final part of the thesis, a case study of a microprocessor
called Hector. It first discusses the traditional way to describe a processor. Then
it describes the Hector microprocessor, informally. Finally, it discusses the formal
description of Hector found in Appendix B.

8.1 Traditional specification of an instruction
set

Traditionally, the instruction set of a microprocessor is specified in a programmer's
reference manual.

8.1.1 A typical programmer's reference manual

The manual for the Motorola 68000 family [189] is representative; the discussion
below is based on it. A programmer's reference manual begins with an introduction
categorizing the instruction set by instruction category, describing the operands of
the instructions, and explaining the notation that appears in later chapters. Next
comes a series of chapters describing instructions from several categories. Finally,
a series of charts or tables summarize the instruction formats, give the instruction
set as a whole, and provide cross-references.

The introduction sketches instruction format, describes the constituents of
instructions (such as register specifiers and addressing modes), and divides the
instruction set into categories. A table of notation gives descriptive names for
mnemonic abbreviations (e.g., ISP: interrupt stack pointer). This list may not
even be alphabetized. The intended function of each of the condition codes is
given by a paragraph of text. Each instruction category is given in tabular form,
with a very brief (one-line) description of the instruction's effect. The introduc-
tion is also likely to give examples of any "unconventional" instructions such as

187



188 CHAPTER 8. HECTOR SPECIFICATION

multiprocessor instructions, or instructions with remarkable side effects.'
The chapters containing instruction descriptions describe each instruction on

its own page or bet of pages. using a standard format. This usually includes
the instruction's assembler mnemonic name and syntax, a one-line summary of
its operation. the kinds of operands allowed, the effects of the instruction on the
condition codes, and a textual description of the instruction's effect. For example.
the ADD instruction of the 68000 family is described by the text:

Adds the source operand to the destination operand using binary ad-
dition, and stores the result in the destination location. The size of
the operation may be specified as byte. word. or long. The mode of
the instruction indicates which operand is the source and which is the
destination as well as the operand size.

Much remains tacit and is simply not specified in such a description. For exam-
ple. the meaning of the "predecrement" addressing mode is not described. Even
information which is critical to the definition of an instruction must sometimes
be assumed bv the reader (and then tested by writing and running small test
programs).

For example, the "move from CCR" instruction takes the processor's condition
code register (i.e., flags) and places them in a data word. However, the bit posi-
tions within this word are not defined. The user must assume that the "move to
CCR" instruction is defined in a consistent way. In its description the bit posi-
tions are defined-but only because it is a convention in this manual to give the
value that every condition code receives. Thus, it is in possible to write a correct
nontrivial interrupt service routine without making assumptions.' This omission
is not particularly compelling, but it occurs in a manual for a popular commercial
product, in use for well over a decade.

It is no wonder that bugs in processor designs persist through the shipment
of products. With an ambiguous specification, the ambiguous cases cannot be
checked. Semantic games such as "the result is undefined" are of no help. They
are little help to an engineer designing a system, but completely useless to the
end-user of a system containing an embedded microcoatroller.

On the other hand, vague specifications do have one (quite dubious) advantage:
they are less likely to contain errors. As the maxim goes, "it is better to remain
silent and be thought a fool than to speak and remove all doubt.' In order to
be able to provide reliable, precise specifications, there must be a precise way of
checking that they are correct. This is the role of formal verification. In this

'For example, the 68000 family's "no-op" instruction actually flushes the integer pipeline.
2 An interrupt service routine must leave the condition codes unchanged. Any nontrivial

routine must accomplish this by saving and restoring them. Yet the effect of the instruction that
is supposed to save the condition codes is not defined!



8.1. TRADITIONAL SPECIFICATION OF AN INSTRUCTION SET 189

chapter we will describe the Hector microprocessor in a formal way, by writing a
formal specification.

The need for checkable, precise processor specifications is apparent.

8.1.2 Instruction-set simulators

As the preceding discussion illustrated, a programmer's manual is a terrible foun-
dation on which to build a processor. Fortunately. processors are not designed by
first writing a manual describing an instruction set. and then implementing the
instruction set from that vague specification.

The "'specification" actually used in designing a system is usually a kind of sim-
ulator: a program. written in either a general-purpose programming language or
a so-called hardware description language (HDL). An HDL simulator is at least a
concrete standard. But such a simulator describes much more than an instruction
set. It requires a very detailed description of how to implement the instruction set.
After all. the compiler or interpreter for the HDL must actually be able to imple-
ment it. Thus. such a description does not actually simply specify an instruction
set. Instead, it specifies a mechanism by which to execute the instruction set.

This has several drawbacks. For example, the simulation program is likely to
contain much unnecessary sequencing, if the HDL is not a parallel language. Even
if the HDL is a parallel language, the HDL interpreter may attempt to simulate
this parallelism by nondeterministic sequencing, but this leaves no guarantee that
observed behavior was specified behavior rather than an artifact of some particular
choice that the simulatc- made. Even when the behavior observed from a simula-
tor is unambiguously implied by the text of the simulation program. it still may
be either an intended or an unintended effect of the simulation. The designer's
tacit distinction between intended and unintended behavior is not apparent even
by examining the text of the simulation program itself. Concealing the simulation
program from customers is then important. It helps to prevent them from relying
on unintended behavior which may be changed in future versions of the design.
Moreover, simulators are kept secret because (since they are actually implemen-
tations) they contain implementation details. Any company would be foolish to
reveal a solid piece of its design to its competitors. 3

A specification structured as a set of assertions lacks these disadvantages. It
lacks implementation details. Thus there is no need to conceal it from competitors.
It can be structured so as to specify only intended behavior, and leave unintended
behavior unspecified. Thus there is no need to conceal it from customers.

The remainder of this chapter will describe the Hector microprocessor. first
in this traditional way, and then in a formal, assertional style (referring to Ap-

3Thus, companies exist whose business is simply to supply simulation models, since manu-
facturers themselves won't supply them, Of course, without access to the design itself, such an
enterprise is even more likely to supply a model whose behavior differs from the actual system.



190 CHAPTER 8. HECTOR SPECIFICATION

pendix B). This will show some advantage to specifying the instruction set a-s
assertions. The rcal advantage, however, will be in the possibility of formal verifi-
cation, which will be carried out in the following, penultimate chapter. Chapter 9.

8.2 Introduction to Hector

The Hector microprocessor is a 16-bit CISC fabricated in 1985. Its 2-address
architecture is similar to the PDP-11, but with more (16) registers and fewer
addressing modes. System state is held in the register file and a few condition
code bits. The implementation is microcoded: at the microcode level it is slightly
pipelined, but at the instruction set level it is not.4 The bus interface is similai to
the Motorola 6800. In addition to a reset line, there is a wait line. DMA, prioritized
interrupts, and a sing!e-step facility. Hector has no cache and does not support
virtual memory.

The Hector processor architecture consists of a 16-bit ALU with condition
codes, and a file of sixteen 16-bit registers, which include the program counter and
the stack pointer. Other specialized values such as interrupt vectors are also kept
in the register file. Altogether, 7 of the registers are completely general-purpose.
and the other 9 sometimes have special use. Hector is a 2-address machine, similar
to the PDP-11, but register addresses occupy 4 bits and addressing modes occupy
only 2 bits. Figure 8.1 shows the architecture.

There are four addressing modes: register, indirect, indirect with post-increment,
and indexed. Figure 8.2 shows the~r encoding.

Additional useful addressing modes can be synthesized since the stack pointer
and program counter are among the addressable registers. Indirect off of the
PC with post-increment yields immediate addressing. Clearing a register before
indexing off of it yields absolute addressing. Indexing off of the stack pointer
yields access to parameters of procedures. Indexing off of the program counter
gives relative addressing.

However, this also results in several peculiar addressing modes. For example.
Hector has a "push" instruction; applying it on the program counter overwrites
the next instruction to be executed.

The instruction set includes data movement, clear, binary and unary arithmetic
and logical operations, comparison, a test-and-branch. conditional branch and call.
an- a. software interrupt instruction. Additionally, a push instruction treats any
register as a stack pointer, and there are instructions to swap bytes within a word.
and to load and store the condition codes. Separate instructions also set and clear
the carry and interrupt-enable bits. Finally, there are instructions for searching
and exchanging arrays of structured data. These instructions were added as an

4 Actually, there is a very slight degree of pipelining: the processor senses the state of the
interrupt lines as it completes execution of each instruction.



8.2. INTRODUCTION TO HECTOR 191

Data Bus

r15: rwoncoure 4 --
114: stack powter . -s=trate
113: generayMs wlnL4eg

02; gnrwaVmijNMt e

(1i, gaiem&'stch end 4e - Rese
ir. Tenenaee be__eq '(-Test
rS: gmerel/struc sizereg W
r77 neiaVch stepreg --)VMA

f6: gen4•eral PM0t
'6 -* ProgiDeat

6S general
W4 genetl -<-NLG

r3: geiwal (-n
f2: ge•al 4--Single Step
0: ' general (- wait
ro: general-4- DuA Request

Flags: Cýv~r, IW -10 W) A Ack.

ALU

Afdess Bus

Figure 8.1: I/O pins and registers of the Hector microprocessor

Code Src Mode Dst Mode Branch Mode
(SM) (DM (BM)

00 Register Register Register
01 Indirect Indirect Absolute
10 Indirect++ Indirect++ Relative
11 Indexed Indexed Indexed

Figure 8.2: Operand addressing modes of Hector



192 CHAPTER 8. HECTOR SPECIFICATION

afterthought by Hector's designers. Figure 8.3 shows the instruction set and its
encoding.

Op I' SML DM I Src I Dst Instruction , Flags

0000 SM DM Src Dst Add Src,Dst CVNZ
0001 SM DM Src Dst Addc Src,Dst CVNZ
0010 SM DM Src Dst Sub SrcDst CVNZ
0011 SM DM Src Dst And Src,Dst NZ
0100 SM DM Src Dst Subc Src,Dst CVNZ
0101 SM DM Src Dst Or Src,Dst NZ
0110 SM DM Src Dst Xor Src.Dst NZ
1000 SM 00 Src Src Not Src NZ
1000 SM 01 Src Src Neg Src CVNZ
1000 SM 10 Src Src Inc Src CVNZ
1000 SM 11 Src Src Dec Src CVNZ
1001 SM 00 Src Src Shi Src C NZ
1001 SM 01 Src Src Rol Src C NZ
1001 SM 10 Src Src Shr Src C NZ
1001 SM 11 Src Src Ror Src C NZ
1010 SM DM Src Dst Cmp Src,Dst CVNZ
1011 SM DM Src Dst Btst SrcDst NZ
1100 BM 00 Src CT Bra Src,CC
1100 BM 01 Src CC Jsr Src,CC
1100 SM 10 Src Src Swap Src NZ
1100 SM 11 Src Src Cir Src
1101 SM DM Src Dst Move Src,Dst
1110 SM 00 Src Src Test Src C
1110 DM 01 Dst Dst Stf Dst
1110 SM 10 Src Src Ldf Src CVNZI
1110 SM 11 Src Dst Push Src,Dst
1111 00 00 - Sec C
1111 00 01 - Clc C
1111 00 10 - Sei I
1111 00 11 -li I
1111 01 00 - Rti
1111 01 01 - - Swi
1111 01 10 Src Dst Exch Src,Dst
1111 01 11 Src CC Srch SrcCC CVNZ

Figure 8.3: Instruction set of Hector

An instruction-level simulator written in stylized C by Hector's designers details
the instruction set in a formal notation. This served as a basis for the formal
specification of the instruction set (Section 8.3.4). Systems built with the Hector
microprocessor have been used in undergraduate labs at North Carolina State
University [179]. Finally, the designers of Hector know that it contains logic bugs
[178], though details of their nature have been deliberately withheld. Thus, an
immediate test of the methodology is that I should detect these known bugs when
attempting to verify the processor.

Hector seemed particularly suitable as a case study for verification for several
reasons. It had not been designed with formal verification in mind. It was real, in
the sense that working parts existed. It was large enough to exercise tools, without



8.2. INTRODUCTION TO HECTOR 193

clrnx()

odr = alu(ZERO,odr,odr);
tl = mread(reg(15]);
mar = alu(ADD,tl,reg[srcD);
memwrite(mar,odr); reg[15] = alu(INCSRC,reg[15] ,reg[15));
cycles += 4L;

}

Figure 8.4: Fragment of the Hector simulator, implementing the "clear" instruc-
tion for indexed addressing. (The first word of instruction fetch has already been
simulated when this fragment is reached.) First, the output data register is cleared
to 0. Then a base address is fetched from the program. Next, an effective address
is calculated. Finally, the 0 is written to memory, and the program counter is
advanced past the instruction word containing the base address.

having all the complexity of a modern microprocessor. It was a microcoded design,
was not heavily pipelined, and had no cache or cache controller. Finally, I knew
one of Hector's designers well enough to expect to obtain the design if I asked.

Hector exhibits the basic features of any processor. It fetches instructions
and operands from memory, executes instructions, stores results, and responds to
several interrupt and control lines.

8.2.1 The Hector instruction-level simulator

In addition to laying out the chip, the designers of Hector wrote an instruction-level
simulator, using the C programming language in a stylized way. This simulator was
intended to provide a faithful model of the microprocessor design. This program
consists of code to control the simulation, functions to implement the ALU oper-
ations, and a dispatcher which calls the proper instruction execution subroutine.
There is such a subroutine for each instruction type. Each of these subroutines
contains one line of code for each processor execution cycle needed for the instruc-
tion being modeled. Figure 8.4 shows a typical example, for the "clear" instruction
with indexed addressing.

This instruction clears a memory location whose address is given by adding an
index (stored in a register) to a base address (stored as part of the instruction).
Its execution is as follows. In the first clock cycle following instruction fetch and
decode, the ALU generates a zero word and places it in the output data register.
In the next cycle, the memory location addressed by register 15 (the program
counter) is read into a temporary register, yielding the base address. This is added



194 CHAPTER 8. HECTOR SPECIFICATION

to the contents of the source register to calculate the effective address. Finally, the
zero that was calculated in the first cycle is written to memory, and the program
counter is simultaneously incremented to advance beyond the base address in the
instruction stream.

This instruction-level simulator can serve as the basis of a specification for Hec-
tor. It cannot serve as the specification itself. As discussed in Section 8.1.2, it is
too low-level. While this does not prohibit the simulator from being used as a
specification, it lacks the clarity of a more abstract specification. Many unneces-
sary sequencing constraints and internal details of the implementation appear in
the simulator. Ideally, such details should not appear in the specification. Fur-
thermore, the C-based description language lacks a formal semantics.

Oakley [194] considered the problem of deriving abstract specifications from
simulations written in an HDL called ISP. Much of his effort was devoted to deter-
mining which of the paths through the control-flow graph of the HDL simulation
could be analyzed symbolically, and which needed case analysis. While it is possi-
ble that his techniques could be applied to a form of the Hector instruction-level
simulator, they are not directly applicd.ale.

Although Hector's microcode was available, it was not suitable as a specifica-
tion. The tools for which it had been developed were not available. Since it was
processed by a highly configurable program, there was not even good definition of
its format. Moreover, microcode is even more low-level than the HDL simulation,
and the semantics of its language are even more loosely defined.

Thus, a suitable formal specification for Hector had to be developed from the
existing descriptions of the processor. The instruction-level simulator was the most
suitable basis with which to begin. Functions computed by instructions, and flag
values, could be translated rather directly from the simulator. The overall structure
of the simulator, too, could serve as a guide to the structure of the specification.
Since in the simulator each instruction class and combination of addressing modes
was described with its own simulation procedure, the formal specification contained
an assertion for each. Developing these assertions required the translation of the
action of each instruction-level simulation statement into a statement of effect.
When statements did not interact, this was straightforward, but when they did, it
required careful consideration of the sequence of actions.

Excerpts of the resulting formal specification appear in Appendix B.

8.3 Formal specification of Hector

This section discusses portions of the specification of Hector. The text of the
specification itself appears in Appendix B. This discussion runs parallel to the
appendix. Readers who are only somewhat interested in processor specification
should read through this section. Those interested in delving into the details of



8.3. FORMAL SPECIFICATION OF HECTOR 195

Hector might wish to study it more carefully, by making frequent references to the
specification itself. Those tempted to skip this section might still want to compare
the discussion of the formal specification of the indexed "clear" instruction (see
"Clearing an array element" on p. 202) to the HDL description of Figure 8.4
discussed above.

8.3.1 Types and system variables

The specification begins by defining several data types. The first few types reflect
the structure of the instruction encoding. Opcodes are divided into major and
minor parts, which are 4-bit and 2-bit fields, respectively. The test performed by
a branch is encoded by a 4-bit field. Addressing modes are encoded by 2-bit fields.

Hector has a 16-bit address space, so an address is a 16-bit quantity. (Address
arithmetic sometimes requires computing a 17-bit value.) Registers are identified
by 4-bit fields. Machine words are 16 bits wide.

Finally, the abstract control, i.e., the input that the processor receives from its
external environment, takes one of several discrete values. The processor can be
reset, it can be interrupted, or it can be run. Different instructions can run for
different lengths of time, and this is reflected by several different "run" inputs.

The system's state space and input space are defined by a set of system vari-
ables, which follow the type definitions. The memory is an array of words, indexed
by memory addresses. The register file is an array of words, indexed by register
addresses. The condition codes are bits. The control input takes on the possi-
ble discrete values enumerated in the control type definition. One bit of abstract
state information represents some circuit invariant information (such as the fact
that some registers have definite logical values, rather than intermediate voltages).
Finally, a flag indicates whether or not an interrupt is pending. These definitions
take only a few lines.

8.3.2 Constants

About two pages of constant definitions follows the definition of the system vari-
ables. Placing them here allows them to follow the type definitions and precede
most other definitions.

The first set of constants reflects the special function of several of Hector's
registers. The program counter, stack pointer, and other special-purpose registers
are members of the register file. Special-purpose registers include those holding
the addresses of the interrupt-service routines for the maskable, nonmaskable, and
software interrupts (as well as registers used to define arrays and records of struc-
tured data, for some specialized instructions which operate on them). Finally, the
register with address 0 is sometimes read as a side-effect of other operations. This
makes it necessary to refer to this register's value frequently in the specification.



196 CHAPTER 8. HECTOR SPECIFICATION

The next set of constants defines the instruction encoding. This section is
organized by major op-code. The binary arithmetic and Boolean operations, such
as addition, subtraction, and bitwise logical "and," each have their own major
op-code. Unary operations require fewer bits to encode their addressing modes,
so these operations share two major codes and are distinguished by minor codes.
Comparisons and tests have their own op-codes.

Branch and jump (i.e., call) instructions share a major op-code, and are distin-
guished by minor sub-codes. The condition code flags tested by the instruction are
encoded by another instruction field. The conditional tests include a test which
always succeeds. for unconditional transfers of control. Two more instructions.
which swap bytes or clear words, also share this major op-code. Data movement
has its own op-code. Two more major op-codes are used for several miscellaneous
instructions, distinguished by sub-fields.

Finally, addressing modes are encodes in a 2-bit field. There are five addressing
modes, but relative addressing is used only for branches, and post-increment is
never used for branches. Register, indirect, and indexed modes round out the
instruction set.

These constant definitions are made with the instruction set in mind. but they
do not define the instruction set. They only give symbolic names tc String" of bits,
and these names are free from any meaning other than the bit string. It is only
after the symbolic names are used in assertions and functions defining the actual
operations that the instruction set will actually have been defined.

8.3.3 Auxiliary functions

Part of the task of specification is to define the functions that various instructions
compute, or otherwise use. These definitions occupy about three pages.

The first few functions are associated with the binary-operation instructions.
The functions and conditions codes computed by these instructions are given by
separate definitions. Each of these definitions consists of a large case statement
which selects one of several functions. The function selected depends on the value
of the major op-code, which appears as a parameter to the function. Condition
code values also appear as parameters, since some functions, such as add-with-
carry, depend on condition code values.

The next few functions are associated with the unary-operation instructions.
They are similar to those for the binary operations, except that there is only one
operand, and there are more cases to consider due to the instruction count.

The last of the auxiliary functions takes a test code and and the condition-code
values, and determines whether the test succeeds or fails.

Together, these functions reveal more about the functions computed by the
instruction set. However, they say nothing about many important aspects, such as



8.3. FORMAL SPECIFICATION OF HECTOR 197

how operands are found, or what is done with the results. Such details are finally
given in the set of assertions that define the instruction set.

8.3.4 Assertions

The assertions in a specification define the transition relation of a state machine.
The interesting state transitions of a processor consist mainly of its instruction set,
plus a few special operations such as interrupts and initialization. The following
discussion runs strictly parallel with Appendix B.

Initialization

Before a processor begins to execute instructions, it must be initialized in some
way. Initialization could be accomplished by designing the circuit so that, when
power is applied, it starts in a particular, well-defined state. More often, however,
applying power does not initialize a processor. Instead initialization occurs in
response to some external signal.'

Initialization is specified by an assertion similar to6 the following:

control = reset •• invariant = 0
A R[PC]= 0

A R[SP] = 0

A R[INT] 4

A R[NMI] = 2

It states that if the processor is given its reset signal, it will then enter a state
where several conditions hold. First, after it is reset, the processor will be ready
to execute instructions or respond to interrupts. This is reflected by the invariant
condition.7

In addition to establishing invariant conditions, initialization of the processor
also resets several registers to known values. These include the program counter,
the stack pointer, and the pointers to the service routines for maskable and non-
maskable interrupts. Finally, after the processor is initialized, no interrupt is
pending.

'Of course, in a real computer this signal is often generated by the application of power.
6 The actual syntax accepted by the prototype verifier appears in the appendix.
7Actually, in this specification the condition that is assumed by succeeding assertions is

stronger than the condition actually proved by this assertion. The discrepancy is due to electrical
effects that are not captured by the switch-level model. Additional assumptions are actually also
manifest in the mapping function, to be discussed shortly (section 8.3.5). Obviously, such effects
must be accounted for by some other means. It is an advantage of the approach to verification
developed here that such assumptions are highlighted.



198 CHAPTER 8. HECTOR SPECIFICATION

Interrupt

Initialization is a very important operation that any system must perform, but it is
not usually a particularly interesting one to examine. This is because initialization
necessarily does not depend on initial state. No matter what happens to a system,
we should be able to reset it. On the other hand, response to other external stimuli
is more complicated and more interesting, for the response to the stimulus depends
on the state of the system when the stimulus arrives.

An interrupt is one such external stimulus. When the processor is interrupted.
it should save certain component of its internal state in memory, and then begin
executing an interrupt service routine.

The assertion describing the operation of Hector's non-maskable interrupt be-
gins by declaring several case variables. Recall from Chapter 3 that case variables
are used to define the various cases in which an assertion applies. These declara-
tions include variables such as s, which will represent the initial value of the stack
pointer. After the declarations come local definitions of the value of the stack
pointer after it has 1een decremented once or twice, and of the value of a flag
word, which consists of the condition code bits inserted into the proper field of a
word. The body of the assertion follows the declarations and local definitions.

The antecedent of the assertion is similar to the formula:

control = nmi A invariant = 1 A M[1] = d

A (r 4 NMI Ar 5 SP Ar $ PC) -+ R[r] = w

A R[NMI] = n

A R[SP] = s

A R[PC] = p
A cyCC - cy AovCC = ov A ngCC = ng AzeCC = zeA intCC = int

A (r # 0) -4 3w.R[O] = w

It describes the conditions in which a non-maskable interrupt occurs. A non-
maskable interrupt occurs when the abstract input is "nmi." Any arbitrary mem-
ory location I holds some arbitrary data word d. Any arbitrary register r (other
than the special registers: namely, the register NMI which holds the address of
the interrupt service routine, the stack pointer register SP, or the program counter
register PC) holds some arbitrary word w. The special registers hold values; n is
the address of the interrupt service routine, s is the value of the stack pointer, and
p is the program counter. The condition codes have arbitrary values. Register 0
also holds some arbitrary' value w, if register 0 was not the arbitrary register r
selected above. (If register 0 was selected, then we have already stated that it has
a value, namely w.)

8 The existential quantifier serves to bind the variable w so that this w is distinct from the
one representing the contents of register number r.



8.3. FORMAL SPECIFICATION OF HECTOR 199

The consequent of the assertion is similar to the formula

invariant 0

A (I # s = A 1^ s - 2) -+ M1lJ = d

A (r : SP) -+ R[r] = w

A M[s - 1](4: 0) = intzengovcy

A M[s - 2] = p

A cyCC = cy A ovCC = ov A ngCC =ng A zeCC = ze A intCC = 1

A R[NMI] = n

A R[SPJ s - 2

A R[PC] = n

It describes the conditions that follow receipt of a non-maskable interrupt. After
an interrupt is received, it will not be pending, and memory will he ,nchanged,
except for two locations on the stack, which will hold the previous condition codes
and program counter. Most of the condition codes will be unchanged, but the
"interrupt" flag will be asserted. The register holding the interrupt service routine
address will be unchanged, and the program counter will also have this value.
Finally, the stack pointer will have been updated, since two values will have been

pushed onto the stack.9 Since Hector does not allow instructions to be interrupted,
i.e., interrupts are sensed only between instructions, this assertion captures all
possible conditions in which an interrupt could occur.

Instruction set

The instruction set describes the normal operation of the microprocessor. In nor-
mal operation, the processor fetches instructions from memory and executes them.
This can be specified by giving an assertion for each instruction. However, the
specification can be made more concise by parameterizing assertions. Thus, rather
than have an assertion for each binary operation and each combination of address-
ing modes, we can specify a single assertion for each combination of addressing
modes. It describes all of the binary operations available in the instruction set.

'The careful reader, comparing this discussion to the text of the specification, will have by now
noticed that references to values sbored in memory are given in the specification with an extra
parameter, a small integer. Strictly speaking, this should not be present. It is a "hint," used by
the program that applies the processor-memory decomposition, to establish the clock cycle on
which a memory operation takes place. To be entirely strict, assertions should be mapped so that
they allow any sequence of memory operations, provided that they yield the desired effect. For
example, the order in which locations are read from memory does not matter. However, checking
for all possible orders would be expensive. For Hector, it is easy to identify the specific order
that actually is used, by examining the instruction level simulator. The generated assertion is
then specific to the particular sequencing that assumed, and would fail (a "false negative") if it
the processor attempted to perform a different sequence of memory operations.



200 CHAPTER 8. HECTOR SPECIFICATION

Two-operand register-to-register instructions The simplest of the address-
ing modes is register addressing. Using register addressing for the source operand
means that an operand data value will be read from a register of the register file.
Using register addressing for the destination operand means that another operand
data value will be read from a register. Since Hector is a two-address machine, the
result will also be written to that register.

The assertion describing the register-to-register instructions begins, as the in-
terrupt assertion did, by declaring its case variables. Next, there is a case restric-
tion. whose scope is the remainder of the entire assertion. This indicates that
the assertion is to apply only when the major op-code field is one of the binary
operations, namely add or subtract (possibly with carry), or Boolean "and," "or,"
or exclusive-or. These comprise all of the binary operations available in the Hec-
tor instruction set. The last part before the body of the assertion gives several
local definitions. First, a value p' represents the incremented value of the program
counter. Second, a value u' represents the source operand, which will either be
some arbitrary value u (if the source register is not the program counter) or the
value p' (if the source is the program counter). Finally, a similar value v' represents
the destination operand.

The antecedent of the assertion describes the conditions in which a register-to-
register binary operation will be performed. The external inputs must be "normal."
Any arbitrary memory location I holds a data word d. The program counter con-
tains some value p, and the memory location p contains the encoded instruction,
consisting of the op-code, source and destination mode specifiers that indicate regis-
ter addressing, and source and destination register addresses. The condition codes
contain arbitrary values. Any arbitrary register r (except the program counter, or
source or destination register) will contain a data word w. If the source register
is not the program counter, it will contain some operand value u. (Note from the
local definitions that if the source is not the program counter, then u = u'.) If
the destination is not the program counter or the source, then it will contain some
operand value v. Finally, register 0 will contain an arbitrary value w (unless the
source or destination is register 0, in which case it has already been stated that
the register contains some value).

The consequent describes the result of the register-to-register binary operation.
If the arbitrary register r was neither the program counter, the source, nor the
destination, then it will contain its original value. If the source was neither the
program counter nor the destination, then it also will contain its original value. If
the program counter was not the destination, the program counter will have been
incremented. The destination will contain the result of the operation computed
by the instruction. The condition codes will have been updated according to the
operation. Finally, the memory location I will be undisturbed.

Several observations are possible from this assertion. The first is that it is
more complicated than might be expected. Numerous case restrictions are needed



8.3. FORMAL SPECIFICATION OF HECTOR 201

to qualify various statements. While some of these (those in the antecedent that
qualify statements about register values) could be eliminated at the cost of effi-
ciency., others (those in the local definitions, or qualifying the final value of the
program counter) cannot. Such case analysis is inherently a part of the processor's
execution of the instruction set. Hector fetches the first word of each instruc-
tion, and increments the program counter, before it decodes the instruction and
loads operands. Thus, if the program counter is used by the execution phase of
an instruction, this phase will see the incremented value rather than the original.
Similarly, if the destination register is the program counter, the execution phase
will over-write the incremented value.

Accurately describing, in a declarative notation, the imperative, sequential na-
ture of the instruction execution in this micro-coded machine, exposes the com-
plexity of its instruction set. This becomes even more apparent when more com-
plex addressing modes are used, such as those with side effects, as the following
paragraphs illustrate.

Clearing a register or memory location The addressing modes of the Hector
instruction set can be illustrated with the "clear" instruction. This instruction
clears a destination value, that is, it sets a word to 0. Depending on the addressing
mode, it will clear a register, a memory location given by a register (possibly post-
incrementing the register as a side effect), or an array element-that is. a memory
location computed by adding an index taken from a register to a base address
taken from the instruction stream.

Clearing a register Clearing a register is rather straightforward. This ac-
tion occurs when the processor is running, the program counter points to the
appropriate instruction, and the other registers have values. 10

After a "clear register" instruction has been executed, the program counter
will have been advanced (unless the program counter was being cleared) and the
addressed register will contain a zero.

Clearing a memory location addressed by a register Clearing a mem-
ory location addressed indirectly by a register is similar, but more complicated
due to the effective-address calculation. The assertion for this instruction declares
several values, including a value, b, to possibly represent the address of the loca-
tion to be cleared. A value b' is defined locally, which represents the address of
the location that will actually be cleared: if the register being used is the program

1°Because of the the way the Hector ALU is implemented, it is necessary that the register to
be cleared hold a definite value. The register file in Hector is composed of static cells, so this
is ensured by electrical effects, but these arc not capturcd by thc ý.itch-level model. Thus we
muzt include them in the assumptions of the assertion, i.e., its antecedent.



202 CHAPTER 8. HECTOR SPECIFICATION

counter, b' will not equal b; instead, it will be p', the incremented value of the
original program counter.

After the memory location has been cleared, the memory location b' will contain
zeros, and the program counter will have been incremented. Other locations and
registers will be unchanged.

The definition of the value b', which is essentially an effective address, un-
derscores the earlier point about the formal ve "fication of processors: that com-
plicated instruction sets require complicated s,,ecifications. Using the program
counter as the indirect register for clearing a memory location is a useless opera-
tion. Its effect is to overwrite the next instruction in memory with a word of zeros.
This word will then be executed as the next instruction!

The same effect could be achieved more easily by writing the word of zeros as
the instruction in the first place. There is no need for the processor to implement
this case of this instruction. However, given that the processor does implement
this case. there is a need to consider this case in the specification.

That is not to say that there is a need to specify the behavior in this case. It
would suffice to indicate explicitly that, in this case, it does not matter what the
processor does. This could be accomplished by enclosing the assertion within a
case restriction. What is necessary, though, is to explicitly indicate that this is a
special case. because it is actually a special case to the operation of the processor.
iii order to formally verify a system, the formal specification must accurately reflect
what the system actually does.

Clearing a memory location and incrementing a register The "clear"
instruction with postincrement addressing is essentially the same as with indirect
addressing. except that after the instruction has been executed, the indirect register
will have been incremented. However, it is necessary to express the fact that if the
indirect register is the program counter, then it also will have been advanced, i.e..
its final value will be two greater than its original value.

Clearing an array element Clearing the memory location given by adding
a base address from the instruction stream to an index from a register is somewhat
similar. The variable declarations include a value to be used for the base address.
and a value j which may be used as an index. A locally defined value j' is the
actual index, which will be the incremented value of the program "ounter, if the
program counter is selected as the index register.

Before this instruction is executed, the processor must be running, the program
counter must point to the instruction, the memory location following the instruc-
tion must contain the base address, and the condition codes and registers must
contain the appropriate values. After execution, unaddressed memory locations
and registers must not have changed, the selected memory word must be zero, and



8.3. FORMAL SPECIFICATION OF HECTOR 203

the program counter must have been incremented by two--once for the instruction
word, and once for the base address.

The various assertions capture the various opeiations of the processor. Asser-
tions describe the initialization and interrupt response as well as the individual
instructions. The assertion describing each instructior is complicated because the
instruction itself is. Statements that are tacit in informal descriptions (such as that
unaddressed state does not change, and advancement of the program counter) must
be made explicit. Special cases must be identified.

The text of the indexed "clear" in the formal specification is obviously less
concise than the text of the simulation. Figure 8.4. Some of the difference can
be explained by differences in notation (lisp requires (too many) parentheses).
the presence of explicit declarations in the specification. and the fact that the
code in the figure is only a fragment of the simulation, whereas the specification
includes the entire instruction execution including instruction fetch. Nonetheless.
the assertional form is more complicated.

This may at first seem like a drawback of formal specification compared to
informal techniques, but in fact it can be an advantage. Making tacit informa-
tion explicit, and ensuring that the conditions in which they apply are properly
qualified, results in an accurate description of the instruction set. Such formal de-
scriptions are more precise than informal ones, and as the examples in Appendix B
show, while they are not equally concise, they are not unduly burdensome. It takes
little more notation to make a careful statement than to make an informal one.
but we should expect to say more in order to express more.

From the given instructions, we can estimate that a complete description of
the instruction set would occupy about 100k bytes, or 50 pages-roughly the same
as would the description of a similar instruction set in a traditional programmer's
reference manual.

8.3.5 I/O mappings

A specification of an abstraction of a system, alone, is incomplete, because it says
nothing about the actual system's behavior. The definitions of how the inputs and
outputs of the abstraction are encoded as inputs and outputs of the circuit is a
necessary part of the specification.

When viewed as a state machine, a computer is actually a rather unusual
system, because it has few inputs and outputs compared to the amount of its
internal state. Furthermoie, computers typically used "memory-mapped I/O."
That is, niost inputs and outputs of a computer system are actually implemented
so that tihc processor accesses them as it does memory locations, rather than as
specialized signals connlected directly to the processor. When the processor reads



204 CHAPTER 8. HECTOR SPECIFICATION

a memory-mapped I/O location, it actually senses the value of some input. When
it writes to a memory-mapped I/O location, it actually affects some output.

For such systems, the mapping of the memory state is effectively both a state
mapping and an I/O mapping, depending on the location being addressed. For
those abstract memory locations that are actually memory locations, it is a state
mapping, but for those "memory locations" that are actually memory-mapped
I/O, it is an input mapping or an output mapping.

Either of two approaches can be taken in order to deal with memory-mapped
I/O. The approach taken here is to just treat memory-mapped I/O as memory.
Alternatively, a system th,.t "'cluded memory-mapped I/O could be verified bv
including the memory-mapped I/O circuit, rather than decomposing the -.stem
at the processor-memory boundary.

Since we are treating memory-mapped I/O as state., Hector has no outputs
which appear in the abstract specification. Thus, we conclude that the inputs
that the processor receives from the external world complete the specification.
These we modeled abstractly with the "control" system variable, which ' as of the
enumerated control type that we also defined. This is the only abstract system
variable which is an input.

To complete the specification we must map this abstract variable onto the
inputs of the Hector microprocessor circuit.

The bus interface for Hector is similar to that of Motorola's early 6800 mi-
croprocessor. In addition to a reset line, there is a wait line, DMA request and
acknowledgment, prioritized interrupts, and a single-step facility. A signal distin-
guishes memory references for instruction fetch, allowing separate instruction and
data address spaces.

The mapping of the control input appears toward the end of the mappings
for Hector (in section B.4). It makes use of the definition of several circuit nodes
within the Hector chip, which appear earlier in the mapping.

Most of the complexity in the mapping is temporal. Consequently, the speci-
fication of the mapping first defines a series of names for specific intervals within
clock cycles. The clock cycle itself is then defined by specifying the signal values on
the clock inputs for each interval within the cycle." The mapping for the control
input makes use of the clock definition itself, as well as the names for intervals
within clock cycles. It should be emphasized, however, that the clock is otherwise
not special. The definition of the clock is certainly central to the timing of the
system, but the clock inputs themselves are completely ordinary circuit inputs.

The mapping for the control input consists of a case analysis with a separate
definition for each possible abstract input value.

An input value of "reset" represents processor initialization. Figure 8.5 shows

"This definition also specifies some "model weakening," which will be discussed in Chapter 9.



8.3. FORMAL SPECIFICATION OF HECTOR 205

[,i

P:-Int

A : t e s t 

-

Figure S.5: Temporal mapping for resetting the Hector microprocessor. The trace,

represent signal values asserted onto the processor's control input pins. The two

traces at the top are the two-phase non-overlapping clock. The reset signal trace
is second from bottom. The reset signal is asserted for two clock cycles, then is
withdrawn so that the processor is allowed sufficiently many cycles to go through
its reset sequence.

A:_st

R:.waitA: reset
A:te 

st

Figure 8.6: Temporal mapping for interrupting the Hector microprocessor. The
non-maskable interrupt signal is briefly asserted. and the processor i, allowed suf-
ficient time to go through its interrupt sequence.

the mapped image of the reset operation as a timing diagram.'" In order to reset
the processor. its clocks must be sequenced through 8 cycles of operation. For the
first two cycles, the reset input must be asserted, and for the remainder it must
be inactive. The nominal beginning of the reset operation occurs when the first
clock phase rises of the figure. The nominal end occurs shortly after the last clock
phase falls. The interrupt signal may be either asserted or inactive as the processor
completes its reset sequence.

An input value of -'nmi'" represents a non-maskable interrupt. Figure 8.6 shows
the interrupt operation. In order to interrupt the processor. its clocks must be

1 2This and the following diagrams are snapshots of a display produced by the verifier from the
text from Appendix B.



206 CHAPTER 8. HECTOR SPECIFICATION

A:.cPn__

SA :._. itA:res,-
A: test

Figure 8.7: Temporal mapping for normal execution of Hector instructions, for a
2-cycle instruction. More than 2 clock cycles must be allowed to occur. because
the clock must be running before the processor will operate.

A:_2t

A:- int

A:_mt

A : -_I" __________________________________________________

A:-wai t

A:reset
A:ts*

Figure 8.8: Temporal mapping for a longer instruction.

running, and the interrupt signal (which is active when low) must be briefly applied.

The processor will then go through its interrupt-response sequence. The nominal
beginning of the interrupt operation occurs at the third rising edge of the first
clock phase. The nominal end occurs slightly after the last clock phase ends.

Input values of "run2," "run.3," etc., represent the normal inputs to the proces-
sor, which allow it to execute instructions, for a particular number of clock cycles.
Figures 8.7 and 8.8 show normal operation, for a short (single-cycle) instruction

and a longer instruction. A single cycle instruction actually requires two cycles:
the first one to fetch the instruction, and the second to execute it. The nominal be-
ginning of the operation occurs at the third rising edge of the first clock phase. The
nominal ending occurs slightly after the last clock phase ends. As the instruction
is being executed, the interrupt signal may be either asserted or inactive.

This concludes the formal specification of Hector. We have described the pro-
cessor's state, and its instruction set, and its I/O. Any system fulfilling this spec-
ification can legitimately be called a Hector microprocessor. We will soon show



8.4. RELATED WORK 207

that the fabricated chip actually is a Hector microprocessor.

8.4 Related work

8.4.1 Hector

Miller and his students [179] designed the Hector microprocessor as a pedagog-
ical example. The reasoning behind the design of Hector's micro architecture is
described in an unpublished manuscript by its designers. Fernald and colleagues
[1031 described CMOS implementation of a low-power microprocessor-based sys-
tem suitable for implanted telemetry from animals. Its processor core is based on
Hector. Though the reliability requirements for implantation in animals are less
stringent than those for human hosts, 3 it is still desirable that such hardware be
correctly designed.

8.4.2 -Processor specification

Work that includes processor verification is discussed in Chapter 9.
Leonard [159] thoroughly surveys the specification of computer architectures.

He includes several works on verification of the same; the coverage of other topics
related to verification, i.e., formal foundations and automata verification, is a bit
uneven.

Bowen specified the instruction set of the Motorola 6800, an early commercial
8-bit microprocessor, using the Z notation [30, 31].

Boyer and Yu [32] specified most of the user mode instructions of the Motorola
68020, a commercial 32-bit microprocessor, using the Boyer-Moore proof system.
Yu [254] used this specification to prove correct the compiled object code of several
standard subroutine library functions, and in doing so detected several bugs.

8.5 Chapter summary

This chapter began by discussing existing specifications such as data books and
HDL simulators, in order to point out the need for better specifications. Then
it turned to a microprocessor called Hector, describing it informally, and with an
HDL. Finally, it discussed the formal specification of Hector. Portions of the text
of the specification itself appear in Appendix B.

"3 As was noted in the introduction, this has been anticipated by microprocessor manufacturers.



208 CHAPTER 8. HECTOR SPECIFICATION



Chapter 9

Hector verification

This chapter completes the case study by discussing the verification of Hector.
Figure 9.1 lists the aspects of Hector's operation that were verified. Initialization

was verified.' Response to the non-maskable interrupt signal was also verified. Fi-
nally, execution of over two dozen combinations instructions and addressing modes
were verified. They included several ALU instructions, branch instructions, pro-
cessor status instructions, and all addressing modes.

Not all of Hector was verified.' The distinction between program and data
memory was ignored. Response to the maskable interrupt signal was not verified.
Several other "abnormal" conditions were not considered as well, including single-
step, test,3 the wait input, and DMA.

Hector contains several instructions which can operate on large arrays of data,
and which are implemented by loops in the microcode. None of these "looping"
instructions were considered. They are beyond the power of traiectory evaluation,
which considers only sequences of circuit operation that ha%,. fixed length. Con-
ceptually, however, these instructions do fall within the methodology: they do not
loop forever, so they could be checked for each possible number of iterations (i.e.,
0 through the size of the memory).4

The first aspect of processor operation to verify is initialization. Initialization
must work in order for any other operations to be possible. Moreover, during ini-
tialization, the processor has no interaction with the memory system. This makes

'This is the most important operation of the processor! Every processor which cannot be
initialized is useless. One in which there are only (known!) errors in the execution of some
instructions might still be useful if the bad instructions are avoided.

2 All of the instructions listed in Figure 9.1 were verified. The verification was conducted as
the supporting theory was developed, and the specification was refined. Not all were verified
against the final form of the specification.

3 Formal verification of test mechanisms has received little attention from researchers, yet it
is crucial that test structures actually work.

4However, this would be impractical. It would be more practical to extend the theory to allow
some sort of bounded inductive reasoning.

209



210 CHAPTER 9. HECTOR VERIFICATION

Instr. Addr. Instr. Addr. 1 Instr. Addr.
Mode Mode Mode

initialization NOT reg. ADD reg., reg.
NMI INC reg. ADDC reg., reg.
CLR reg. DEC reg. SUB reg., reg.
CLR ind. SHL reg. SUBC reg., reg.
CLR inc. ROL reg. AND reg., reg.
CLR index SHR reg. OR reg., reg.
BCS reg. ROR reg. XOR reg.. reg.
BPL ind. SWAP reg. BTST reg.. reg.
BGE rel. LDF reg.
BVC reg. STF reg.

Figure 9.1: Verified instructions and operations of Hector. These were verified
by symbolic simulation of a switch level circuit extracted from the layout. They
include all of the operations specified in Appendix B and discussed in Chapter 8.

it possible to begin verification before even considering the memory system. How-
ever, before the processor could be verified, it had to be modeled for verification.

9.1 Modeling of Hector

The verification of Hector consisted of three steps. The first was constructing
a usable switch-level simulation of the Hector chip. The second was identifying
the correspondence between the simulation and the specification. The last was
actually checking the correspondence between the specification and the simulation
by using the verifier. (Interspersed among these tasks were the construction of a
verifier tool and the formulation of the methodology itself.) Of course, debugging
of the specification and the circuit occurred at all stages, whenever errors were
made manifest.

T. K. Miller made a description of the Hector design available by FTP over the
Internet. This included:

"* the CIF' description that had been used by MOSIS to fabricate the chips6

"* C source code for an assembler and an instruction simulator

5CIF, the Caltech Intermediate Format, is a simple language for representing the geometry
of chip designs [174].

6The CIF file contained 36850 lines and 813k bytes.



9.2. PREPARATION OF HECTOR 211

0 a small amount of additional rudimentary documentation, including:

- a pinout for the packaged chip

- a draft paper on the microcontroller architecture

- microcode source (though not the microassembler!)

- manual pages for the assembler and simulator.

9.2 Preparation of Hector

In preparing a simulation model Hector design, CAD tool issues came to the fore-
front. Such issues yield little deep insight into verification, but they have pragmatic
significance. Before verification could commence, the layout had to be represented
correctly, and the switch-level simulation had to be made to work.

The initial representation of the layout was a CIF file. Reading this description
into Magic [209], a layout editor developed at UC Berkeley, eventually revealed that
Magic made an undocumented assumption about CIF, which were not satisfied by
the Hector description. This manifested itself only when attempting to simulate
the design. Minor modifications to the hierarchical structure of the layout (but
not to the actual layout itself) proved necessary.

9.2.1 Simulation

Once the layout was correctly represented within Magic, the circuit extractor pro-
duced a representation that could be simulated. A few modeling problems re-
mained, such as structures that yielded X values during simulation, due to node
sizing or transistor strengths. Most of these were easily corrected by adjusting
Cosmos parameters. Some transistors were marked as zero-delay in order to re-
duce the number of simulation steps required to simulate each phase of operation
using Cosmos [14].

Other than these modeling changes, one significant change to the layout was
necessary: drivers were added to the bidirectional busses. As reviewed in Chap-
ter 4, the switch-level model analyzes each transistor group separately. Recall that
a transistor group is a set of transistors which share charge because their sources
and drains are interconnected. Thus, a transistor group that contains a bidirec-
tional bus necessarily includes all of the transistors that can source or sink current
onto the bus. So as to be able to treat the bus as truly being bidirectional, it was
necessary to add input enabling transistors, which effectively determined whether
an external signal was being applied to the bus, as shown in Figure 9.2. When
the enable signal is low, the bus can function as an output, and its logic value
is present on the output pin. When the enable signal is high, however, the bus
functions as an input, and the input logic value is driven onto the bus. Dealing



212 CHAPTER 9. HECTOR VERIFICATION

0000000
0 0
0 0

bus -01
enable 0 0

0 0
input 0 0-1

10000000

Figure 9.2: Bus driver modification to Hector layout. In order to properly model
bidirectional busses at the switch level, input driver transistors were added to
Hector's bidirectional pins, such as the one shown. When the "enable" signal is
low, the bus functions as an output, but when it is high, a value can be asserted
on the labelled input.

with the bidirectional busses in this way allowed all the modeling to be done at the
switch level, without extensions. In contrast, attempting to add a bidirectional bus
element to the switch-level model would have raised questions of the correctness
of the extended model.'

In addition to circuit modifications, one tool improvement was necessary. The
first step in analyzing a transistor circuit in Cosmos is to run the program "sim2ntk."
It converts a transistor circuit to a switch-level circuit by assigning discrete sizes
and strengths to nodes and transistors. Originally, sim2ntk would not automati-
cally assign sizes within a transistor group in which some sizes had been manually
annotated. Since the ALU consisted of many multiplexors, it contained some ex-
tremely large transistor groups. During verification it became necessary to adjust
sizes of some of their nodes, but due to number of nodes in the group, manually
assigning all their sizes would have been prohibitive. A simple modification to
sim2ntk corrected this deficiency.

Some additional modifications were made to Cosmos and the verifier for conve-
nience or efficiency, but no additional functional modifications to the conventional
CAD tools proved necessary.

After addressing these tool issues and deficiencies, circuit extraction and anal-
ysis with Cosmos produced a working switch-level simulation model of Hector.
This simulation model served as the realization to be verified against the Hector

7It would have also allowed an objection that the work no longer used an existing circuit
model, and it would have been more work, yet not contributed to the purpose of this research.



9.3. VERIFICATION OF HECTOR 213

specification of Chapter 8 and Appendix B.

9.3 Verification of Hector

The actual verification of Hector commenced after producing a working switch-
level simulation. The necessary ingredients of the verification methodology, in
addition to the simulation model, are a high-level specification (as discussed in
Chapter 8), and state mappings. Since development of the methodology proceeded
in parallel with verification of Hector, the initial form of the specification was
not as well-structured as final result, but the key distinction, between the high-
level specification and the mappings, was always present. The discussion below is
primarily chronological.

9.3.1 Initialization

As mentioned before, the first thing to verify is initialization. Verifying initializa-
tion required some reverse-engineering. Initial values of registers were not specified
in the paper describing Hector, but they could be obtained from microcode. They
could also have been obtained from the simulation itself.'

State mapping

The abstract assertion describing initialization of the Hector microprocessor makes
several statements about the contents of the registers once the processor is initial-
ized. It was necessary to identify the bits of the register file in order to map
statements about the abstract register file contents into statements about charges
on nodes in the circuit. This required some reverse-engineering of the layout (fol-
lowing traces from the pinout to the busses, to determine the bit ordering), as well
as some experiments with the simulator (to determine the word ordering).

It was not necessary at this point to identify all of the state within Hector that
would ultimately be needed. Initialization says nothing about the condition codes.
Moreover, since initialization does not access memory, it was not yet necessary to
consider processor-memory decomposition.

It is important to emphasize that it was never necessary to identify several
important elements of the processor state, such as the instruction register, the
memory address register, and memory data register. Though these are crucial
components in the implementation of the instruction set, they are not visible to
the programmer. Consequently, they do not appear in the specification of the

'it might at first seem to be "cheating" to adjust the specification so that it fits the realization.
However, the end result of the process remains a specification to which the circuit bears a formal
relation, regardless of how the specification is derived.



214 CHAPTER 9. HECTOR VERIFICATION

instruction semantics, and there is no need to identify them. Every detail of their
operation is dealt with in an entirely automatic way by the simulation model of
the processor.

Verification

The first version of the specification of initialization asserted binary values directly
on internal busses during certain times. This amounted to assuming that valid logic
levels, rather than intermediate voltages, were present on the busses. There is not
a good basis on which to make such an assumption. However, the assumption was
easy to make, and it allowed gaining some additional familiarity with Hector. In
addition, there was a rather weak reason to make this assumption: the values on
theses busses would have come from the registers, where there was closed positive
feedback.

The verification was later refined so as to assert binary values in registers rather
than on busses. There is a good electrical basis for assuming that a static register
with closed positive feedback will hold a binary value. The patterns generated this
way had essentially the same form as the final version, but the specification, at
this point, was not structured into assertions plus mappings.

Problems

In first attempting to verify initialization, there was some glitching X oscillation in
the ALU, which was eliminated by adjusting sizes. Making the nano-ROM outputs
visible aided the identification of the problem.

It was also found that bit 1 of several registers took on the X value instead
of the desired logic level, 1. Assuming that an arbitrary binary value was held in
one of the registers finally fixed this.9 In general, destination registers must have
binary values in order for the ALU to operate. The selected source and destination
registers always drive their values onto the corresponding busses on each cycle. If
either contains X values, the X values reach the ALU, where they are applied to
the select lines of multiplexors, hence they propagate to the result.

Then it was found that the wrong nodes had been identified for the microcode
pointer: its outputs had been identified, but its storage nodes were the ones that
should have been identified.

Generally, during verification, problems manifest themselves as ternary X val-
ues appearing on some node. (Wrong binary values are less common, and usually
much easier to deal with.) It took about a week to go from a working simulation
to a verification of initialization, albeit not in a well structured framework.

9 This register was the destination of an ALU operation during one of the cycles of initialization,
and in the word being stored, only the affected bit was 1.



9.3. VERIFICATION OF HECTOR 215

9.3.2 Instruction set

After verifying initialization, I turned to the instruction set. fhe strategy in con-
ducting verification of instructions was to start with particular instances, using
constants rather than symbolic values. This provides some simple validation with-
out the expense of a full symbolic analysis. It was often a simple matter to repeat
verification later with symbolic values after getting constant values to work.' 0

State mapping

Execution of an instruction is more interesting than initialization for two reasons.
First, it involves more antecedent state. That is. the system can be initialized
from any state, but it can only execute instructions from its initialized, running
states. This is specified in the antecedents of the assertions that describe the
instruction set. Thus, mapping antecedent state becomes important when verifying
instructions.

Figure 9.3 illustrates the antecedent as well as the consequent mappings. The
mapping for the register state is performed by symbolic indexing. The key ob-
servation of this figure is that the antecedent state and the consequent state are
mapped from the abstract specification onto the circuit in the same way. The only
difference is the timing. The antecedent refers to the state before the instruction
is executed, while the consequent refers to the state after the instruction has been
executed. Note that although the microcode pointer is mapped "earlier" than the
register and flag values, this is done consistently in both the antecedent and the
consequent.

The second property of execution of an instruction that makes it more interest-
ing is that it involves interaction with the memory system. Even if the instruction
itself does not access memory, the instruction must be fetched from memory.

Thus, verifying an instruction requires confronting processor-memory decom-
position. The bus timing for memory operations was determined by examining the
timing diagrams in the paper describing Hecto: r179], and confirmed with simula-
tion. Figure 9.4 illustrates the resulting timing for one particular instruction.

Clearing a register

The first instruction attempted was "CLR RO." This instruction clears register
0, and was a good choice of a first instruction because it did not deal with the
condition codes or fetch an operand. On the other hand, it did write a result,
so there would be similar instructions using more complex addressing modes that
could be verified next.

1°But not always. For performance reasons, symbolic versions had to be carefully crafted when

there was the possibility of antecedent failure. See the discussion of performance in section 9.4.1.



216 CHAPTER 9. HECTOR VERIFICATION

C:rao 1
A:f Fc
C:fc FA:rO.O

C:rO.O U
A:rl.O
C:rI.O I

A:r15.0 "1
C:r15.0

Figure 9.3: Consistency of antecedent and consequent mappings for the '-clear"
instruction using indexed addressing. Lines beginning with A: indicate values
asserted by the antecedent. Those beginning with C: indicate values checked by
the consequent. Nodes pi and p2 are the clocks. raO is the least-significant bit
of the microcode pointer, fc is the carry flag. and rO.O. etc. are least-significant
bits of several registers. The grey background for ri .0 indicates that register 1
receives a binary value in only some of the cases, and is X in others.

A:Pl ..

C:rd-wr
A:dOC:dO
C:ao

Figure 9.4: Temporal mapping of memory values for the "clear" instruction using
indexed addressing. The processor reads memory twice (once to fetch the first
instruction word, and once to fetch the base address, and writes once (to clear the
indicated array location). During the "read" memory operations, the consequent
checks that the control and address values are correct, while the antecedent pro-
vides the data value. During the "write" operations. the consequent checks the
control. address, and data values.



9.3. VERIFICATION OF HECTOR 217

Problems Initially, not even instruction fetch could be verified. It was deter-
mined that simulation of two cycles was needed, starting from X values throughout
the simulated system state, before the simulated processor could fetch an instruc-
tion. The first of these cycles precharged various structures throughout the mi-
croprocessor, and the second initialized the micro-machine. However, the initial
formulation of the "CLR RO" instruction still failed. Two bits of the microcode
pointer were being set to X when the other bits made their second transition.
Tracing through the circuit revealed that an edge-triggered flip-flop used to latch
the non-maskable interrupt signal was the source of the X value. It N as now ap-
parent that an indication of whether an interrupt was pending-which had not
been included in the original abstract specification machine's state-should be in-
cluded. Re-running the initialization assertion and examining the value to which
this latch was initialized gave the proper value for this latch for instruction execu-
tion. After making these two changes-allowing two clock cycles before instruction
fetch in the mapping, and including the state of this latch in the antecedent of the
assertion-the "CLR RO" instruction was verified.

Clearing memory

The next instruction attempted was "CLR (RO)." This instruction clears a word
of memory whose address is in register 0. It differs from the previous instruction
in that it writes to memory. Attempting to verify this instruction revealed an
error in the specification of the timing of the vm-a signal during memory writes,
After fixing this and verifving the instruction, the instruction "CLR (Ro++)" was
attempted. This is a similar instruction but it increments register 0 after clearing
the memory location. When this instruction first tried, it failed at first because
the specification used the wrong opcode, so this was corrected.

Finally, the "CLR I(RO)" instruction was attempted. At first it could not be
verified because, during the fetch of the second instruction word, data was not
asserted on bus for long enough." The problem manifested itself with ternary X
values on the address bus during the cycle following the actual problem. Ai'tei
correcting the timing, the instruction was verified.

At this point, all of Hector's operand addressing modes had been veritled to
some extent, though not in their full generality. Thus far, the problems thiat had
been encountered fell into three categories. The first were simple mista-es, such as
transcription errors, e.g., the opcode error in the "CLR (RD++)" inst, uction. The
second were timing mistakes, e.g., the Vma signal for memory write operations, and
the memory read timing. Finally, there was a more significant specification error:

"This instruction was the first to read from memory into the data path. The other instructions
each occupied a single word of memory. The fetch of the first word of an instruction reads from
memory into the instruction register, not the data path. The two types of read operations had
slightly different timing constraints.



218 CHAPTER 9. HECTOR VERIFICATION

the "NMI latch" error. This was due to a deficiency in the abstract specification.
which failed to consider whether or not an interrupt was pending. This is an easy
thing to forget, since interrupts are often considered only tacitly when thinking
about normal instructions. However, operation of the actual system depends on
interrupt signals. In order to verify a sys' em, it is necessary to specify what it
actually does, not what we might think it does.

Debugging

Identifying the source of errors during verification seems straightforward in ret-
rospect, when the causes of the errors can be simply stated. However, locating
these errors was the most tedious part of the verification of the microprocessor.
There were several reasons for this. First, without schematics or layout plots, it
was difficult to even know what circuitry surrounded the node exhibiting the error.
In order to see what the circuitry was, it was necessary to sketch portions of the
processor schematic by exploring the network within the simulator. 12

Second, there is often considerable activity between the time that an error
occurs and the time that it is noticed.' 3 Thus, in order to find the cause of an
unwanted X value on one node, it was often necessary to trace through the circuit.
find that the X value was coming from some other node, and then re-run the
verification, monitoring the newly discovered node, to find the time that it in turn
had been set to X. Sometimes the process had to be repeated several times.

Third, understanding the state of a symbolic simulator is difficult. This is be-
cause a symbolic simulator does not represent a single state for the system being
modeled. Instead, it represents many states, one for each valuation of the sym-
bolic variables. Understanding even a simple Boolean function of three variables
requires a moment of thought. The requisite effort is increased if the function is
expressed in some automatically generated form (e.g., as an ordered sum of prod-
ucts, or as a BDD) rather than an expression designed by its writer for exposition.
Understanding a large set of even more complicated functions, and the structure
of a circuit, and the relation between the two-at the same time-is all but impos-
sible. Thus, when errors are detected by symbolic simulation, a strategy different
from symbolic simulation is required to analyze them. The first step is to select a
valuation for the symbolic variables, one which manifests the error. Although in
principle any such valuation will do, simpler valuations-such as those in which
most of the variables take the value 0-are often easier to understand. Given such
a valuation, examining the symbolic simulation state under this valuation becomes
tractable, for the state values become 0, 1, and X rather than complex functions.

'2 A useful stack-based browser was programmed and included in the verifier's user interface.
This eliminated some of the tedium of typing long node names, but it was still necessary to sketch
and annotate fragments of transistor network as they were explored.

13This is a good general rule of debugging which bears repeating.



9.3. VERIFICATION OF HECTOR 219

Finally, identifying the source of errors can be difficult because of the slow speed
of Boolean manipulation caused by the sheer size of BDDs, in some cases. Partic-
ularly when a circuit is not behaving as expected, it may be computing functions
for which the BDD variable ordering chosen by the user is not a good ordering.
In a few extreme cases while verifying Hector, the only sign that something was
amiss was simply that the BDDs were growing so much larger than expected that
the simulation was slowed to a near-halt. When this occurred, it was possible to
interrupt the simulation and examine the profiles of the BDDs representing values
on internal nodes, in order to select an improved variable ordering.

Thus, debugging the specification was tedious for several reasons. Nonetheless.
as more instructions were verified and the design became more familiar, the process
became faster.

Specifications at this time lacked a good structure, and they consisted of tra-
jectories ,-;itten directly in a simple temporal language, embedded in Scheme.

More instructions

Since the addressing modes appeared to be working, other different aspects of
the processor were explored, first by verifying the "BCS RO" instruction. This
instruction transfers control to the location held in register 0, if the carry flag is
set.

Initially, it failed in the case when the flag was set (the taken-branch case).
The problem manifested itself as X values in the program counter. The cause was
determined to be X values in register 16.14 Register 16 was used as a temporary
destination during the execution of the branch. However, the selected source and
destination registers always drive their values onto the corresponding busses on
each cycle, so the X values reach the ALU, where they propagate to the result,
due to the conservatism of the switch-level model. Specifying that arbitrary binary
values were held in this register'" allowed the "BCS RO" instruction to be verified.

The next instruction verified was the "LDF RO" instruction. This required the
identification of the condition code flag bits within the circuit.

Completing the state mapping It was easy to find the condition codes in the
layout, but it would have been tedious to attempt to distinguish them by tracing
through the layout. It was much easier to examine the operation of the "load flags"
instruction in order to identify each of the particular flag bits.

14Although Hector's programmer's model (Figure 8.1) has only 16 registers, numbered 0-15,
as does the abstract specification of Hector, the actual chip has two additional registers used by
the microcode as temporary locations.

"5 Since this register does not appear in the abstract model of the processor, this had to be
specified as a portion of the mapping. This can be seen in the definition of the mapping for
invariant, in Appendix B.



220 CHAPTER 9. HECTOR VERIFICATION

(define (binCy op v u cy ov ng ze)

C?: (1/ (vec-== op sub) (vec-= op cmp))
(vec-< (cons 0 u) (cons 0 v)) ; unsigned test

C?: (vec-== op subc)
(vec-< (cons 0 (cons 0 u))

(cons
0 (vec-add v '(0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ,cy))))

Figure 9.5: Specification of the carry condition for the "SUBC" instruction, from
Appendix B. The carry flag will be set if the subtrahend (u) is less than the
minuend (which is the sum of v and the "old" carry cy). The comparison is
unsigned. The specification language is geared toward signed two's-complement
representation. In order to specify the unsigned comparison, it is necessary to
extend the 16-bit quantities to 18 bits: once because the minuend may require
17 bits (if the addition of the carry causes overflow), and a second time in order
to perform the unsigned comparison using the signed test vec-<. In contrast, the
SUB and CMP instructions need only one bit of sign extension.

Verification After verifying this instruction, the companion instruction "STF
R0" was tried. At first, it failed, and it was necessary to adjust node sizes in order
to verify it.

Next, the instruction "ADD R8,R4" was attempted. At first, it failed because it
did not specify that there was a binary value in register 0, which is read as a side-
effect when the program counter is incremented. After correcting this problem,
a specification error was found: the source and destination registers had been
interchanged.

Verification of other instructions proceeded similarly. Typically, only minor
errors would be found, but determining their causes was time-consuming. Veri-
fication of some instructions proceeded more smoothly. For example, the "NOT
Rn" instruction was the first unary instruction attempted. Verifying it required
locating and correcting specification errors, but most of the other unary operations
for register addressing were then straightforward.

The "SUBC" instruction is an instructive example because it was difficult to
verify. This instruction's use of the condition codes, in particular the carry flag, is
quite subtle to specify correctly. Figure 9.5 illustrates this.



9.3. VERIFICATION OF HECTOR 221

9.3.3 Interrupts

Hector responds to interrupts between instructions. That is, instructions them-
selves are not interruptible. However, this does not mean that Hector's interrupt
mechanism is so simple as might be expected. Hector's microcode senses the in-
terrupt signal as it jumps to the top of the interpreter loop, using a multi-way
branch. This saves one cycle for each instruction, compared to a naive approach
which senses the interrupt signal after finishing one instruction and before com-
mencing another. One possible invariant that can be used in verifying Hector's
instruction execution is "between instructions the microcode pointer reaches the
top of the main loop." This is correct in the absence of interrupts.

In the presence of interrupts, the proper invariant is more complicated. It states
that, one cycle before the instruction boundary,'6 the microcode is at a location
that jumps to the top of the loop using a multi-way branch.

According to the microcode listing, there are 49 such locations. However, be-
cause the microcode assembler used in implementing Hector re-orders instructions,
there is no obvious correspondence between the locations in the microcode listing
and microcode addresses in the Hector chip. Identifying such locations in the chip
was therefore somewhat tedious. As shown in the specification in Appendix B,
only a subset of those locations was actually identified, since only a subset of the
instruction set was actually verified.

The strategy followed in identifying each of these locations was to let them be
discovered by simulated instruction execution during verification. The first step
was to try to verify an instruction whose "ending microcode address" was not
known. This of course would fail, but it was possible to note the failing microcode
address, at a time preceding the end of instruction execution by one clock cycle.
this new address was then incorporated into the invariant. After all such addresses
were identified, it was necessary to repeat the verification of all instructions, to be
sure that they all could start from any such address.

An alternative strategy would be to move the sensing of an interrupt into the
meaning of an instruction. Then the specification of each instruction would state
that execution begins at the "top of the loop" and ends either at the same point, or
somewhere else (the start of the interrupt response microcode), depending on the
state of the external interrupt input. Thus, the invariant would not be mapped to
microcode address. Instead, the "pending interrupt" element of specification state
would be mapped to microcode address. It might be easier to verify the entire
instruction set this way, though it would require developing these slightly different
state mappings.

"i.e., one cycle before the instruction begins (in the antecedent), or one cycle before it ends
(in the consequent)



222 CHAPTER 9. HECTOR VERIFICATION

9.4 Observations

A number of observations can be made from the case study. Section 9.4.1 shows
that, while performance was adequate for the Hector microprocessor, it is not yet
useful for verifying a multi-million-transistor microprocessor at the switch level
today. Even to reach this current level of performance, some interesting steps
were required. Section 9.4.2 discusses Hector bugs. No real, significant bugs were
found in Hector, although a minor difficulty was revealed. Section 9.4.3 describes
the assumptions made during verification. Section 9.4.4 discusses several of the
difficulties encountered.

9.4.1 Performance

Figure 9.6 shows the performance of the verifier for several instructions and oper-
ations. This is a thesis on methodology, not algorithms. Consequently, the table
is inteý.ded as an indication of the magnitude of the numbers involved, and not for
a detailed analysis of a factors contributing to the verifier's performance. As the
table indicates, checking an assertion is not a fast process.

Checking each assertion involves a significant amount of work. Consider the
"clear" instruction with indexed addressing. Referring back to the timing diagrams
of Figures 9.3 and 9.4 is instructive. In order to verify this instruction, 7 cycles of
system operation must be simulated. Simulation of the first two cycles is necessary
because of precharging. Then instruction fetch is simulated. Only then does the
actual verification of instruction execution commence, and it requires 4 additional
cycles: the clearing of an internal register, a memory access, an effective-address
calculation, and a final memory access.

One of the factors that contributes to the time required to verify an instruction
is particularly worth discussion: analysis of charge sharing.' 7

Figure 9.7 illustrates the charge-sharing problem with multiplexors. The prob-
lem can be illustrated by examining a single path through the multiplexor, as
shown in the figure. Suppose that initially the two transistors at the ends of the
path are on, but the one in the middle is off. Charge representing the input value
a and the output value b will be present on the respective internal nodes. If the
two transistors at the ends are then turned off, these charges will be retained. If
the middle transistor is now turned on, the two internal nodes will share charge.
If values a and b represent the same logic level, both nodes will retain this level.
However, if a and b represent different logic levels, charge sharing will result in
both nodes taking on an intermediate voltage-the ternary X value.

"17Designs which conserve power by reducing unwanted transitions in inactive functional units
(by holding their inputs constant) may be easier to analyze because this charge-sharing phe-
nomenon would be reduced.



9.4. OBSERVATIONS 223

Instr. Addr Time BDD size
Mode (s) final max

clr reg. 518 240000
clr ind. 341 31000
clr inc. 380
clr indexed 853 159000
clr reg. 559 241000
clr indexed 819 156000
clr indexed 611 6930
add reg.,reg. 1711
xor reg.,reg. 647 22500 86000
sub reg.,reg. 1090 122000
subc reg.,reg. 1068 62000
add reg.,reg. 644 103000
or reg.,reg. 741 53000
xor reg.,reg. 893 67000
clr ind. 534 23000 45000
initialization 303 496 2376
nmi 790 4783 15445
initialization 369 256 2051

Figure 9.6: Performance of verifier on several assertions. Performance varied with
the exact form of the assertion, with BDD variable ordering, with variation of the
tuning parameters of Cosmos, and with model weakening. Time is measured in
user CPU seconds on a DECstation 5000/200 with 32 MB memory (25 MHz R3000
CPU, 19.9 SPECmark) under the Mach 2.6 operating system.



224 CHAPTER 9. HECTOR VERIFICATION

1 "-100 0 "-0-0 .-3-1 1 "4-' 0

SO Sl s2

a b

a if a=b
X otw.

Figure 9.7: Charge sharing in a multiplexor path.

Symbolic simulation of such a circuit when a and b are complex Boolean ex-
pressions thus implicitly requires formation of a Boolean expression indicating the
cases in which the values differ. This process will occur at every pair of internal
multiplexor nodes like those in the figure.

It is important to realize that at no time does the entire path shown in the
figure conduct. Thus, this analysis can potentially occur between the output value
on a multiplexor and any of its possible input values. Moreover, (assuming that the
multiplexors actually operate as multiplexors and not as charge-coupled devices)
this path, and consequently its analysis, contributes nothing to the operation of the
circuit. Such widespread, detailed analysis, involving unrelated BDDs, is expensive
and reduces performance of the verifier.

The charge sharing that causes this performance problem is due to stored
charge. In order to reduce the problem it is necessary to eliminate either the
charge storage or its analysis. Since the charge storage is a physical phenomenon
in the circuit, eliminating its analysis is the only choice. This can be accomplished
by treating the internal nodes as if they cannot store charge, allowing them to par-
ticipate in charging paths, but not to act as capacitors. In Cosmos, such nodes are
represented as having a size of 0. Forcing Cosmos to treat the internal multiplexor
nodes as if they cannot store charge prevents the charge sharing analysis, isolating
the separate values a and b. Note that this is a conservative approximation.

However, not all unwanted analysis takes place in multiplexors. The Hector
chip contains only a single ALU. During the execution of an instruction, the ALU
is used for several things. First, when the instruction is fetched, the ALU is used
to increment the program counter. As operands are fetched, the ALU is used
to perform effective-address calculations. Then the ALU is used to compute the



9..1. OBSER ATIONS 225

pld

wre'
Wr9

'arlO

wr12

wr13
wrw14

Figure 9.S: Values on the result bus during verification of instruction fetch (ii-
lustrated for the -clear" instruction using indexed addressing). Each unit step of
simulation is shown. The result bus stabilizes beginning with the least-significant
bit (the diagonal "'marching- portion). After the result bus has stabilized and its
value has been latched elsewhere, the simulation model is weakened by returning
the ALU state. to the ternary X. which makes the result bus alsk take on this
"value (at the right-hand edge of the figure).

result. Thus. during execution of one instruction the ALU operates on a sequence
of unrelated values.

As the ALU performs computation. signals propagate through the carry chain.
To simulate this requires numerous evaluations of the excitation functions that de-
scribe the ALU operation. Values left-over from previous computations participate
in the operation. This too can lead to the calculation of large Boolean functions
merely to represent transient values that have no lasting effect.

Isolating successive ALU computations from each other is not as easy as isolat-
ing inputs of multiplexors from their outputs. because the ALU depends on charge
storage in order to function. It is necessary to modify the circuit model in order to
accomplish this isolation. By temporarily resetting circuit nodes to the ternary X
value at certain times. we effectively cause them to "forget" their values. Compu-
tation in Hector's ALI' occurs during the ol clock phase. By weakening the ALV
state at the leading edge of this clock, we can isolate successive ALU operations.
reducing the size of BDDs. Figure 9.8 illustrates this weakening. It was necessary
to weaken the ALl state in order to verify instructions which involved complex
addressing modes. Data inputs and nanoROM inputs both were weakened.

In summary, performance of the verifier in modeling the Hector processor is
usable but riot ideal. This is largely due to the low level at which the processor is



226 CHAPTER 9. HECTOR VERIFICATION

Figure 9.9: Race condition detected by model weakening.

modeled. Judicious modifications to the circuit model were necessary in order to
achieve the current performance level.

9.4.2 Hector bugs

The partial verification that was actually completed did not detect any logic errors.
There is one logic error in Hector known to its designers, which is related to

cleanup when returning from an interrupt [177]. However, the verification did not
examine this aspect of the system's operation.

One small potential problem, a race condition on the memory address bus,
as shown in Figure 9.9, was detected. However, it was not detected directly by
the actual verification, because of the simple timing model in Cosmos. Instead,
it became apparent due to model weakening. When the internal address bus was
weakened during a portion of the clock cycle during which its value should not
have mattered, the value latched in the memory address register became X. The
problem is that the same clock edge, the rising edge of 01 is used to gate a value
off of the "destination" bus leaving the register file, and also to latch this same,
biiffered value at the output of a multiplexor. In the instructions actually verified,
this race is active only when the value being driven onto the address bus is actually
also the value already on the address bus. Thus, it does not matter, in this case,
which side wins the race. In either outcome the address bus will not change.
However, it is possible that the microcode would drive the system in such a way
that this error would cause unreliable operation. Only by verifying the entire
instruction set would we be able to determine whether this was actually a bug.

Figure 9.9 illustrates this problem. In the figure, the race is obvious, but in
the chip the error is much more subtle. The data is gated out in the data side
of the chip, while the latching signal is generated in the controller, on the other
side of the design, and it is not obvious that there is a sensitized path through
the inverting logic. Thus, the race can be classified as the violation of bus timing
discipline. This is a common class of design errors.



9.4. OBSERVATIONS 227

No serious problems were detected in the Hector chip design. This is not
particularly surprising, since it is known to work.

9.4.3 Assumptions

It is important in understanding any work to grasp the assumptions that underlie
it. As has been described, it was not possible to simply take the existing layout,
and without further effort use it as the realization to be verified. In addition to the
physical CAD difficulty with the layout representation and Magic, several electrical
assumptions were made. Most of these were ordinary assumptions that must be
made in the course of switch-level modeling. For example, the sizes and strengths
of some nodes and transistors had to be changed from the values our simple-minded
translator had assigned to them. As a further example, the addition of input driver
transistors to the bidirectional 1/0 pins has already been addressed.

One additional assumption that has been hinted at (p. 214) should be made ex-
plicit. Typically, in switch-level simulation, the ternary X value *s seen as "bad."
That is, X values are eliminated-for example, by putting the circuit through
its initialization sequence-in order to model binary operation. In contrast, for
verification the ternary X value must be seen as "good" because of its power in
covering many cases of circuit operation with a single pattern. However, stating
that a nodc holds a ternary X value is a weaker statement than stating that the
node hold an arbitrary Linary value. In many cases, this difference is inconsequen-
tial, but in order to verify Hector it is necessary to state that the values in several
of the registers are binary.

The registers in Hector store values in closed feedback loops having positive
gain. Figure 9.10 shows one bit of such a register. Given sufficient time, evc- a
metastable value stored in such a loop will resolve to a binary value, as random
noise will eventually cause it to leave the metastable point. Thus, the assumption
that binary values are stored in the registers is sound."8 Assumptions such as this
should be confirmed with a circuit simulator such as Spice.

This binary-value assumption can be phrased as an existential quantification,
stating that "there exists" some binary value v such that the register cell stores
the value v. When such a quantifier appears in an assertion, it is treated the same
as any other form in an assertion-according to the semantics of the specification
language. Since an assertion is implicative, the antecedent is effectively negated.
By De Morgan's law, an existential quantifier in the antecedent can be replaced by
a universal quantifier over the entire assertion, which then, by the convention of
mathematics, can be tacitly omitted. Thus, to assume that a register stores some

8Ilf we were to be completely formal, every assumption would create a corresponding proof
obligation. This would in turn entail that we have a formal model in which we could express and
prove the resolution of binary values. While this would be possible [155] it is beyond the scope
of this work.



228 CHAPTER 9. HECTOR VERIFICATION

Figure 9.10: Cell from Hector's register file. During the first clock phase, the
feedback loop is closed. Provided that the phase has an appreciable duty cycle
and that the inverters are properly sized, the cell will store a binary value. If an
intermediate voltage is applied, it will resolve to a binary value after sufficiently
many clock cycles. (Alternatively, holding the 41 clock input high for a sufficiently
long period could be used to guarantee that the registers are initialized to binary
values.)

arbitrary binary value is ultimately expressed by a "new" variable (i.e., one which
does not appear elsewhere).

In the context of initialization it is not possible to check this binary-register
assumption within the confines of the switch-level model. In the context of instruc-
tion execution, however, a check is possible. In fact, if the assumption is expressed
as a part of the mapping of an invariant to be assumed and maintained by -dl in-
structions, it will be automatically included by the consistency of antecedent and
consequent mappings imposed by the methodology, unless we make special effort
to avoid it. The existentially quantified statement that the register cell contains
some value will appear in the consequent as well. This existential quantifier, how-
ever, remains existential if its scope is enlarged from the consequent to include the
entire assertion. Within the quantifier, the check imposed by this binary-values
statement will fail for some cases (those where the quantified variable v is assigned
a value different from the value actually on the node) and pass for others (those
where the values agree). Applying the quantification by using the smoothing op-
erator on the final Boolean function will eliminate the failing cases provided that
the passing cases exist, and yield an ultimate indication that the circuit is correct.

However, as was just shown, this check is not without expense. Fortunately,
we can argue that we need not make it. Since the binary values are already being
assumed by one assertion (namely, the initialization assertion), we can consider this
statement to be an assumption of all of the assertions, and eliminate the check.
Pragmatically, this can be done by assuming in the antecedent a stronger form
of the invariant (i.e., one containing the binary-values statement) but checking a



9.4. OBSERVATIONS 229

weaker form (one without this statement). In terms of the specification language
and the abstract machine that it conceptually defines, an additional binary state
variable is introduced. This splits the state space of the system into two halves,
and in one of them the binary values are indeed present. We assume that the
system is always in this half, but we do not check this. All this is reflected in the
specification in Appendix B.

Categorizing assumptions

The assumptions that were made during verification of Hector can be placed into
3 categories. The first consists of annoyances, such as the changes made to the
layout in order to make it acceptable to Magic. While any sort of change could
compromise the validity of verification, these changes were entirely straightforward

The second kind of assumptions are those made in modeling the circuit at the
switch level: sizes, strengths, and drivers for bidirectional pins. If they are violated,
the validity of the verification is called into question. Here a strength of our model
is revealed, for we needed only a few assumptions, which are standard in modeling
circuits at this level. In contrast, some "switch-level" models used in approaches
to verification based on theorem-proving make many more assumptions, e.g., that
the circuit is well-formed according to some criterion. We believe that the way to
prove designs correct is to make as few such assumptions as is practical.

The final kind of assumptions are those that transcend the switch-level model,
such as that the registers store binary values rather than indeterminate voltages.
Here we satisfied ourselves that this was indeed true by our experience in electrical
engineering, and the relative simplicity of these small structures. To actually
formally guarantee that these assumptions hold would require a deeper electrical
analysis. Such an analysis could be carried out by some other means if necessary.
Again, the presence of such details in our model keeps it much closer to the actual
hardware than are the models used by many others.

9.4.4 Difficulties

It is worthwhile to categorize the difficulties encountered in verifying Hector, in
order to provide guidance for future efforts and tools. The difficulties fell into two
categories: working with Hector, and the interplay of efficiency and the form of
the specification.

Working with Hector

The documentation obtained with Hector lacked many details of the internal oper-
ation of the circuit. Moreover, the representation of the circuit-as a layout-was
inconvenient for hand analysis, and the internal representation of the circuit in the



230 CHAPTER 9. HECTOR VERIFICATION

simulation tools-as an abstract graph-was also unpleasant to work with."0 This
made two parts of the verification process particularly tedious. The first was the
development of the state mappings, and the second was debugging.

Locating nodes for state mappings Locating relevant circuit nodes-pins,
bits in the register file, and condition codes-was hampered by the CAD tools
tending not to name internal nodes. Some of this difficulty was due to particular
procedures followed. One problem was that the layout was represented by a CIF
file. Though this format preserved cell names, it did not preserve node names.
Moreover, regular arrays in the designers' original layout were not preserved in the
CIF format. Instead, they were represented as collections of individually placed
cells, given in an indeterminate order. The strategy adopted was to label nodes as
their functions became known. Pins were trivially identified, given the chip pinout.
Internal nodes were more difficult.

By comparing structures in the layout with a block diagram from the Hector
paper [179], and interpreting cell names, it was possible to identify the locations
of many major structures such as busses, the register file, the microcode ROMs,
and the ALU. The basic cell of the register file was fairly small, and a schematic of
its circuit appeared in the Hector paper, so it was easy to find and label the node
within the cell on which data was actually stored. However, the organization of the
register file was more problematic. It was easy to distinguish the least-significant
from the most-significant bit, and locate bits in the register file geometrically, but
the cell names, and hence the fully qualified node names, bore little relationship
to geometry. Here it was necessary to enumerate some of this structure by hand,
by following the layout.

The register file was an easily identifiable, regular layout of an essentially simple
structure. The condition codes, in contrast, consisted of random logic intermixed
with random wiring, made more confusing because the control signals from the
microcode to the ALU were routed through this area. Thus, locating the storage
nodes within the condition code block required some careful study and signal
tracing of the layout. Ultimately, the individual condition code bits were identified,
but not distinguished, by examining the layout. Simulation was used to distinguish
the bits from one another.

The microcode pointer was relatively easy to identify in the layout, foT it was
a small but regular structure.

Documentation and debugging Verifying a microprocessor is conceptually
straightforward, although there are many details to attend, and (as mentioned
earlier) finding the appropriate storage nodes in a switch level circuit can be te-
dious. Surprisingly little documentation is needed to actually verify a correct

'1It did have the advantage of automated traversal.



9.4. OBSERVATIONS 231

circuit against a correct specification.
However, such a situation seldom arises. Circuits and specifications are not

correct. If they were, verification would not be an interesting problem. When
the specification and the realization disagree, debugging commences. Not having
documentation can then be a significant impediment. In particular. exploring a
large switch-level circuit without aid of schematic diagrams is slow.

The typical case is the diagnosis of an unexpected X value on a node. It is first
necessary to determine the time at which the node actually receives the X value
(or, the time at which it should have received a binary value, if it is always X).
Once this time is determined, the simulation can be repeated and stopped at this
point. Tracing through the circuit commences.

A value can be propagated onto a node only through conducting transistors.

Thus, tracing can omit those transistors known to be off. All other transistors must
be included. Multiplexors are particularly time-consuming.'° The large number
of possible paths through a multiplexor composed of switches requires exploration
of many cases during such a low-level analysis. In every case during debugging.
the unwanted X values were propagated through multiplexors, rather than being
generated within them by charge sharing. Thus, abstracting from the multiplexor
structure to its function might have been an effective way to speed this tracing.
Unfortunately, since the modular structure of the design was not preserved during
the switch-level analysis, this wam not possible. Moreover, since the generation
of X values remains a possibility, analysis in the general case must include the
internal structure of multiplexors.

Providing even a slight additional amount of structure to the circuit, either
in the form of schematics, or by preserving the cell structure of the layout. would
have eased the debugging problem by decreasing the amount of reverse-engineering
needed to recover this structure in order to understand the circuit whenever a
failure occurred.

Efficiency and specification form

Another difficult task was maintaining a balance between four things: between
abstraction, clarity, and correctness in the specification, and efficiency in the veri-
fication. Consider the specification of an operation which uses two values, respec-
tively u and v, from two registers, a and b. The fragment R[a] = u A R[b] = v will
appear in the antecedent of an assertion in the specification, in some form. Such
a statement cannot hold for all cases (i.e., valuations of the case variables a., b, u,
and v). In particular, when a = b then the statement fails when u •- v. When such
a statement appears in the antecedent, this failure is known as 6.ntecedent failure.

2°This makes it unfortunate that they are also the principal implementation technique used in

Hector.



232 CHAPTER 9. HECTOR VERIFICATION

Moreover, since the condition of whether or not the antecedent fails depends
on the data values (i.e., the valuation for u and v), this is a data-dependent an-
tecedent failure. Antecedent failure is equivalent to an automatically generated
case restriction. As discussed in Chapter 7, data-dependent case restriction is
expensive.

Address-dependent 21 case restriction is less expensive."2 For example, the simi-
lar specification fragment (if a # b -- (R[a] = uAR(b] = v)) has address-dependent
case restriction. Unfortunately, this particular e). mnple is not equivalent to the first
statement above: the case where a = b, i.e., where both values are fetched from
the same register, is not covered at all. If the specification fragment is rewritten
as R[a] = u A (if a :ý b -+ R[b] = v), on the other hand, then this case will be

covered.
Thus, an efficiency issue becomes reflected in the abstract specification itself.

This clutters the specification and makes it seem less abstract. By introducing
additional notation, it also introduces additio~al chance for errors.

On the other hand, the explicit identificaion of case restriction can be an
important advantage. When case restriction is introduced automatically through
antecedent failure, the set of cases that remain uncovered is not indicated explicitly
in the specification. The information is tacitly present, but without analysis its
very existence may not even be acknowledged.

It is easy to analyze antecedent failure during verification of an assertion by
trajectory evaluation. In fact, the maintenance of a BDD that indicates the an-
tecedent success conditions (the complement of the antecedent failure conditions)
is a side-effect of the trajectory evaluation algorithm. However, this BDD is not
particularly easy to understand.

Making the case analysis explicit in the specification avoids this problem. Since
this strategy is more efficient, and also makes the results of trajectory evaluation
easier to interpret, it was adopted in verifying Hector. On the other hand, it does
tend to clutter the specification, as Appendix B shows.

9.5 Related work

Several microprocessors have been formally verified by other researchers. Except
for MTI, which was designed to study built-in self-test techniques, they have been
specialized designs created to evaluate verification techniques. Designs created

"21Assuming that there are fewer address bits than data bits.
"22One might speculate that Coudert's "restrict" or generalized cofactor might be useful in

approaching this problem. It will not make up all the difference. With explicit antecedent failure
on a small previously verified [56] pipelined data path circuit, using the generalized cofactor
actually reduced performance by 7-10% compared to a specification using explicit antecedent
failure.



9.5. RELATED IWORK 233

for verification allow focus on various specific issues, but not necessarily on the
way the issues interact. The verification of Hector is unique in that it was a
pre-existing design, its initial description was produced entirely with conventional
CAD techniques, an an accurate low-level model was used in verific-ition, but,
nonetheless, it was specified at a fairly high level. Using a real design in our
verification meant that the description was purely structural. This immediately
raised low-level issues such as timing and the absence of an initial state. Also,
even though Hector cannot truly be called a pipelined machine, there was a slight
degree of overlapped operation, and this made it necessary to develop a theory
capable of describing pipelining.

The other verified microprocessors include FM8501 [137, 86] and related designs
[136, 239], simplified versions of Cayuga [227] and Lilith [2131, Tamarack [150],
Viper [77], SECD [119, 120], and MTI [79].

9.5.1 FM8501

Hunt [137] verified a microprocessor called FM8501 using Boyer-Moore logic. He
designed FM8501 himself because no suitable formal description of existing ma-
chines was available. This description was taken down to the level of recursive
functions describing state update. Thus, its implementation was at much the
same level of abstraction as the Hector instruction simulator used as a basis for
specification in the present thesis. The notion of "verification" that Hunt used was
formal proof of equivalence of two formal descriptions.

The basic strategy was to model hardware devices by recursive functions, and
then show that they to possess desired properties. Hunt used the Boyer-Moore
logic rather than an existing HDL because of the reasoning system associated with
Boyer-Moore. Boyer-Moore logic is quantifier-free first-order logic with equality,
expressed in a Lisp-like notation. New objects are added by providing axioms to
define them inductively. The axioms must satisfy certain principles to ensure that
only total recursive functions are defined.

Hunt modeled sequential operation over time by using recursive functions tak-
ing one "clock," argument plus arguments representing state (i.e., registers). These
recursed at each clock tick, providing their recursive invocations with arguments
describing state modification, until the clock was exhausted. These functions were
proven equivalent to specification functions, which maintained less state and op-
erated on different time scales.

The formal description of FM8501 was given as a recursive definition of the state
machine. It made use of an oracle to model the interaction between the processor
and its memory system. The formal specification was a recursive function having
fewer parameters (i.e., fewer state details). The correctness proof abstracted the
hardware state to yield only the components of interest (those mentioned in the
specification.)



234 CHAPTER 9. HECTOR VERIFICATION

The definition of the oracle is somewhat interesting, because although only
the existence of the oracle was actually important, the oracle actually had to be
constructed, because the Boyer-Moore logic lacks the existential quantifier. 23

Hunt's original work sparked much subsequent research. Hunt has continued
to work on successors to FM8501, gradually reducing the distance between his
designs and real systems [136, 239]. Crocker re-verified FM8501 using an entirely
different system, SDVS, his state delta verification system [86].

Work related to Hunt's has also been done in the area of "totally verified
systems" where many aspects of system operation, from compilers and operating
systems to hardware, are verified within a comprehensive framework-in this case,
Boyer-Moore [17, 188, 187].

Hunt identified the contribution of his work as having verified two descriptions
of a design, one at the gate level. He identified better characterization of clocks,
particularly low vs. high level, and better characterization of external devices and
separation of the external device specification from the processor specification,
as particular needs to be addressed by future work. This work did not consider
pipelining, which as we have observed in section 1.5.2 (p. 18) would be difficult in
the Boyer-Moore approach.

9.5.2 Cayuga

Srivas and Bickford f227] verified a pipelined microprocessor called mini-Cayuga
using a functional-language verification system called Clio. Their specification
was written in a lazy functional programming language [235] called Caliban24 for
which a theorem prover exists. Lazy languages are convenient for modeling infinite
sequences, and functional languages are more amenable to formal reasoning than
are imperative languages. This makes it possible to consider pipelining. The Clio
prover is based on rewrite rules.

The verification of mini-Cayuga is interesting because its controller uses a rather
realistic clocking scheme (four-phase non-overlapping), and it is implemented with
a three-stage pipeline.2" The Caliban language includes an element I which was
used to represent unknown values during transitions.

The correctness criterion is given in terms of an abstraction mapping, which
maps low-level states to abstract states. An abstract "step" of system operation is
identified with each transition into a high-level states which is the image of some
low-level state in which an invariant holds. For mini-Cayuga, this invariant held
in each state in which an instruction had just completed execution. Since the

"23Proof of an existential quantification in an automated system typically requires that the user
provide the prover with many "hints" which effectively amount to a constructive definition, even
in a logic which allows quantifiers.

24after Turner's similar language Miranda and Shakespeare's Tempest
"25The pipeline consists of fetch, compute, and write-back stages.



9.5. RELATED WORK 235

processor was pipelined, the statement of the invariant had to mention the values
in the processor's pipe registers. This notion of is similar to Abadi and Lamport's
notion of "stuttering" [1]. It is helpful to realize that in such a situation, not all

26the state of the system is contained in the formalized notion of what a state is
That is, not all high-level states that are purportedly the same can actually be
identified as identical, since there is some implicit information as to how long the
system will remain in such a state before making a transition.

The verification of mini-Cayuga assumed that the processor started in a known,
power-up state. The processor was modeled at a register-transfer level (i.e., the
interaction of components was verified, but their individual correctness was not
considered). Nonetheless, this work should be taken as a considerable achievement.
It demonstrated the verification of pipelining while using a model of system tinning
that was accurate to individual clock phases.

Sekar and Srivas [213] used similar techniques in a different proof system, called
SBL, to verify a simplified version of Wirth's LILITH processor. Their model
included a simplified form of instruction prefetch.

This 'work is of particular interest because they processor-memory interac-
tion was modeled using a nondeterministic function. This they called an "asyn-
chronous" memory, meaning that the time between the issue of a request to
the memory and the response from the memory system could vary arbitrarily.
They modeled this by giving the elapsed time as the value of a "randomization
function."27

9.5.3 Tamarack

Joyce's thesis [1501 consists of the verification of a microprocessor called Tamarack
but also the development of a more generic framework with which to construct
such proofs. Tamarack is a version of Gordon's computer. It has been described
at a variety of levels, and is not pipelined. At the outset Joyce recognizes that ex-
isting well-conceived abstractions should have a significant role in applying formal
methods.

Joyce observed that the primary role of formalization is "to support thoughtful
human participation in the proof process." This has often been the observation of
people working with formal methods [109, 125, 127, 246].

Joyce was perhaps the first to verify formally a fabricated chip [145]. However.
this chip had reset problems. (Though it is probably obvious, it bears repeating
that if part of a system has been formalized, the parts not formalized are a likely
source of problem.)

2 6Victor Yodaiken pointed this out to me, in a slightly different context.
2 7This required that they adjus, their prover since the randomization function was not referen-

tially transparent (in other words, it does not obey standard substitution rules). Each occurrence
of the randomization function was taken to be different.



236 CHAPTER 9. HECTOR VERIFICATION

Joyce also experimented with a silicon compiler, translating the specification
into the GENESIL language, but encountered timing problems; specifically, re-
lating the two-phase clock of the silicon compiler to the single-phase clock of his
formal specification.

Windley [245] worked on making processor proofs using HOL more tractable
by carefully choosing intermediate levels of "generic interpreters." By reducing
the amount of detail that any one proof must contend with, he was able to reduce
dramatically the number of lemmas required to complete a proof. Such work bears
out Davie's observation [89] that though the obvious levels at which to describe a
processor are very high or very low (i.e., the two levels used in the current thesis),
there are actually a wide range of levels available.

9.5.4 Viper

Viper (Verifiable Integrated Processor for Enhanced Reliability) is a commercially
available device that has been advertised as having been formally verified. It is
not pipelined. The verification was carried out at several levels. Cohn [78] reports
in detail on the verification of the "second level" of the Viper microprocessor.
Verification of Viper consisted of defining in the HOL logic functional expressions
for a block model, analyzing the block model using this functional representation,
deducing results at higher levels of abstraction for each instruction type, and com-
paring the two levels by relating state, and by relating conditions at the high level
to block-level conditions. The third task was not completed because of HOL's lack
of support for bit strings, and Cohn's unfamiliarity with processor architecture.
The achievement of this verification effort was essentially a symbolic execution of
a register-transfer level model, and Cohn concluded that lacked analysis "at levels
at which problems seem likeliest to occur." This verification is most remarkable
for sheer size of the effort, rather than the techniques used; the proof considered
122 major state paths.

Cohn made several conclusions and remarks, speculating that the original plan
for multilevel verification was not ideal. The second level proof had to consider
sequencings that ought to have been needed in only the higher level, due to the way
that the results of each state transition composed with the results of its successors.

Cohn observes that for large efforts, it would be useful for a proof system to
have at least two facilities that HOL lacks (and notes that providing them is a
research problem). The first is a facility for describing the abstract structure of
proofs (the ML code to generate a particular proof is too concrete). The second is
a way to trace the "material dependence" of theorems, so as to obviate unnecessary
repeated proof when only a small part of some lemma is changed.



9.5. RELATED WORK 237

Critiques

Since Viper has been commercially promoted as being a verified microprocessor,
it has been subject to a number of critiques. Cohn [77] has pointed out that there
will always be two gaps in any verification effort--one between the highest level
of formalization and the designer's actual intentions, and the other between the
lowest level of formalization and the actual, physical world. Other observations
were that at every level of abstraction, there will be some things ignored, and that
extra-logical factors play a large, possibly overriding, role in the reliability of entire
systems.

Cohn also made two observations to guide future work: that common models
and languages for communication between designers, verifiers, and fabricators,
form a prerequisite for widespread adoption of formal verification, and that concise
and clear abstract representations will lead to increased confidence in correctness
of specifications.

Brock and Hunt [33] also critiqued the verification of Viper. They noted that
despite the use of a powerful logic-based environment, the specification of Viper
was still far removed from high level abstractions, e.g., no formal relation was
shown between the ADD32 function and mathematical addition. They were also
critical of the lowest level of verification, which was accomplished by "intelligent
exhaustive simulation" [203] and was not related formally to the higher levels.

9.5.5 SECD machine

Graham [119, 120] has verified an implementation of Landin's SECD machine, an
architecture designed to execute a functional programming language (a functional
subset of Scheme). The specification was in terms of Lisp S-expressions-a much
higher level than the bit level of the actual hardware. The low-level formaliza-
tion modeled the chip's 2-phase non-overlapping clock. Temporal abstraction was
performed by the techniques of Melham [175]. Since the SECD architecture imple-
ments several high-level operations, the chip implementation is microcoded, and
the implementation of some instructions uses loops in the microcode. Proofs were
carried out in the HOL system, and the proof obligations included termination of
these loops.

The lowest level formalized was the level of cells of the circuit design. Switch-
level simulations were carried out for all of these library cells, except the CMOS
exclusive-OR gate (it is difficult to simulate [233]). The actual fabricated CMOS
chips were found to have wiring errors in shift registers and also the exclusive-OR
gate.

Graham found in conducting the verification that many instructions were over-
specified. For example, the order in which two memory-read operations occurred
might be specified when the order did not matter. He also found that careful



238 CHAPTER 9. HECTOR VERIFICATION

design of proof dependencies was needed so that revising fundamental definitions
did not entail more re-proof than necessary.

9.5.6 Other processors

Collavizza [79] presents a parts of a semantic specification of the programmer's
view ("level 1") of a microprocessor (the MTI processor [23]), as an example of
efforts to develop a comprehensive methodology of specification at this level. Then
instructions are implemented in terms of microprograms ("level 2"), and correct-
ness is defined in terms equivalent to a commutative diagram. All objects are
treated as bit vectors, avoiding the need to convert between integers and their bi-
nary representations. An instruction buffer is defined as part of the microprogram
machine state. For pipelined systems, additional variables are added to denote
pipeline registers. The intent is to decompose verification into a set of smaller,
hence easier, verifications which can then be composed. Provided the description
of the microcoded implementation is sufficiently precise, the proof that the higher
level'was equivalent was found to be relatively easy. Partial proofs were done with
the Boyer-Moore prover and the OBJ3 term-rewriting prover. The lowest level
modeled was essentially the microcode.

Corella [81] has developed a technique for proving the equivalence of micro-
processor controllers. It is based on an extension of the state-machine comparison
technique of Supowit and Friedman [232], and constructs an explicit state graph.
Each vertex of the graph represents a set of states determined by a set of constrains,
or equations, associated with the vertex. The program operates by breadth-first
search from a set of roots representing initial states, and the state graph is ex-
panded only when new nodes are not subsumed by existing ones. This procedure
can produce false negatives, and the algorithm is not guaranteed to terminate,
because little or no reasoning about data values is performed. The example con-
sidered was the controller from Tamarack-3.

9.6 Chapter summary

This chapter reported on the verification of a substantial subset of the operations
performed by the Hector microprocessor. Verifying a real microprocessor, is, as
expected, an ambitious project. Using a pre-existing design had the advantage
that the design, unquestionably, was not simplified so that it could serve as an
example for verification. It had the usual disadvantage of real systems: tools often
break in unexpected ways, and simple expedient fixes may be necessary.

Although verification of the circuit against an accurate specification was fairly
straightforward despite a lack of circuit documentation, debugging the initial spec-
ification in order to reach an accurate specification was not. Errors manifest them-



9.6. CHAPTER SUMMARY :239

selves as unexpected binary values or ternary X's on circuit nodes. In order to
evaluate the cause of these values, it is necessary to understand the surrounding
circuit. Without relevant documentation, reverse engineering is necessary.

An unexpected result of the case study was the realization that, at the switch
level, symbolic simulation of short sequences of system operation (e.g., simple in-
structions) is relatively inexpensive, but simulation of longer sequences becomes
more expensive. This is due to charge storage between successive operations of
functional units. During symbolic simulation this charge sharing must be ana-
lyzed in detail for all cases, although it contr'fu'es nothing to the function of
the circuit. Selectively weakening the simulation model is a possible approach for
dealing with this problem, but more work is required to evaluate the useful scope
of its application.

Despite the problems, a substantial subset of Hector's operation was verified.
Not all aspects of processor operation were considered. However, a varied set of
instructions was verified. Initialization and interrupt response were also verified.
Verifying the entire processor would allow the claim "Hector is a verified micro-
processor," but it would add little additional insight.



240 CHAPTER 9. HECTOR VERIFICATION



Part IV

Postliminaries

241



Chapter 10

Conclusion

We have presented a methodology and applied it to an extensive example.

10.1 Summary

We started by noting that processor correctness was an interesting problem. Then
we examined two simple examples-a latch and a stack-to get an idea of what
it meant for a circuit realization to be correct with respect to a specification, and
how we might go about expressing and proving this. We saw that though these
circuits were very simple, we needed to consider details such as clocks and the
timing details of the overlapped operation of pipelined circuits. We also sketched
the decomposition of the stack into components, for separate verification. This
introduction also tacitly established our approach of formalizing existing practice
when possible.

After this introduction, we turned to the methodology itself. First we estab-
lished some mathematical background, including a concept called marked strings,
in order to express overlapped operation. Then we started at the specification
level. We defined the appropriate model of computation. We did this first in a
very abstract way, letting an agent be simply an entity with inputs and outputs.
Then we made the model more concrete-specializing it to Moore machines-and
developed a specification technique based on a language of assertions. We intro-
duced this language and its semantics with a subset, and gave several examples
including our latch, a textbook finite-state machine, a RAM, and our stack.

Next we turned to the realization level. We discussed the general needs of a
model of realizations, including conservatism and monotonicity. We also gave par-
ticular details of one particular model, the switch-level circuit model, and showed
that a switch-level simulation defined a Moore machine.

Having established specification and realization levels, we turned to implemen-
tation, the relation between them. Since the two levels differed, we required a

243



244 CHAPTER 10. CONCLUSION

means to relate them. We defined implementation as a relation between general
agents, and illustrated it with a general example. Implementation is a relationship
between input-output behaviors, which for sequential systems (Moore machines)
are input-output sequences.

The goal of verification is to prove implementation, and we next discussed how
to do this. We related implementation to containment of sets, and discussed how
to expose the internal or hidden state of a system. Then we described how to
establish containment of entire behaviors by looking only at transitions. We did
this by using a general mathematical idea, the containment of one set of semigroup
generators within the image of another, under a homomorphism. We showed that
we could use marked strings to develop the appropriate homomorphism. Then we
showed that we could establish the proper containment of transitions by checking
assertions that had been mapped onto marked strings of the circuit. Along the
way we discussed two auxiliary properties, conformity and distinction.

Having built up a theory, we next described how it could be applied. We briefly
discussed the verification of decomposed systems, which was necessary for verify-
ing processors against specifications of computers. We then mentioned additional
applications. We also considered how to represent sets of marked strings of circuit
configurations in a way that was efficient and compatible with our symbolic sim-
ulator. We defined a language for mapping assertions onto circuits, and gave its
semantics. Then we discussed the checking algorithm itself, and some aspects of a
verification tool.

In the final paLt of the thesis, we considered a case study. After discussing ex-
isting informal techniques for describing processors, we described the behavior of a
pre-existing 16-bit microcoded nMOS microprocessor called Hector, and specified
it formally. Finally, we extracted a switch-level circuit from the layout used in fab-
ricating the Hector chips, and verified a diverse set of operations of the processor,
including initialization, interrupt response, and several instructions.

10.1.1 Objects in the methodology

Figure 10.1 illustrates the main objects in the methodology, and the properties
tested of them. The diagram reflects the distinction between the specification, the
realization, and the proof that the latter implements the former.

Figure 10.2 provides more context, and includes moire tests that we did not
consider. This figure is also divided into the specification, the realization, and the
proof. Our model of realizations was a standard model: the switch-level circuit
model. Our model of specifications, however, was less standard. In an abstract
sense, illustrated at the top of the diagram, our specifications were descriptions, in
an assertional specification language, of nondeterministic Moore machines. Such a
machine takes, as input a string from an input language, which is defined over some
inpat alphabet. It produces a string over an output alphabet. In addition, it oper-



10.1. SUMMARY 245

Specification

Input language Transitions Output alphabet

Conformity Distinction

Input mapping Output mapping

Proof State mapping

Realization Circuit
Simulto

"-• 
Ir•'•

Obedience

Figure 10.1: Objects in the methodology, and the tests on them. Objects are
shown in Roman type, and tests in italics.



246 CHAPTER 10. CONCLUSION

Specification

Input alphabet Input language State space Transitions Output alphabet

! V

SConsist ncy \ • / N.' "
, Consistencyo / Reachabiity, Covering Totality.Totality '9onformity7 Acceptance \ Initializability Wbisti nct.o .

Input mapping , Output mapping

Proof State mapping

Consistency Consistency i Consistency
of Range of Range Totality of Range

Realization 
Circuit

-Simulation

'bed,ýenc'eý

Figure 10.2: Possible objects of the methodology.



10.1. SUMMARY 247

ates over a certain internal state space. As it receives inputs, it produces outputs
and moves among the states in the space according to its transition relation.

This is rather standard, but two usual elements are omitted from our model:
start states and accepting or final states. The omission of final states is actually
quite common when modeling systems that are intended to "run forever" rather
than compute a final result then halt. The omission of start states is less common.
It reflects the reality of circuits whose state, when power is first applied, cannot be
predicted. The correct way to verify circuits that must be initialized before they
are used is not only to verify that they can be used, but also that they can be
initialized. (Omitting both start and end states also lends a certain simplicity.)

Given only a description of a specification machine-the top part of the diagram-
a number of consistency checks are conceptually possible. We might check that
the input language is indeed a language over the input alphabet. We might check
that the machine actually has some defined behavior on each string in the input
language, or that all the states in the state space are actually reachable via strings
in the input language. We might also check that the machine can be initialized,
that is, that from an arbitrary state the machine can be driven into a known state.
We could also check whether the machine could actually produce all the outputs
in the alleged output alphabet.

Some of these properties-such as consistency-are rather simple, while others-
such as initializability-are quite subtle, but all are specification properties. Each
could be checked. Even the simple ones are likely sometimes to detect errors that
people actually make when they write specifications. However, in this thesis we
have concentrated on verification, rather than on specification correctness.

Another essential part of our specifications are mappings of inputs and outputs.
They reflect the way in which the system's abstract inputs are encoded for the
circuit, and the way in which the circuit outputs are decoded to yield abstract
outputs. (The mappings that we use are set-valued, so they are actually capable
of expressing arbitrary relations.) While the previous, uppermost portion of the
specification was conceptually independent of the particular realization we wished
to verify, mappings are usually specialized to a single circuit.

Having these mappings made more tests possible. We could have checked that
the mapping functions were actually total-that is, that they actually defined the
representation in circuit terms of every symbol of the input or output alphabet.
We could also now check two more important properties as well. First, the input
conformity property expresses the ability to encode each abstract input string in
the input language.' We could also check output distinction, that is, that different
abstract output symbols map to distinct sets at the circuit level. (Otherwise, we

'This does not follow automatically from totality of the input mapping, because when we
consider pipelined circuits we find that two or more successive, independent, abstract input
symbols might be represented by overlapping circuit input sequences. Portions intended to
overlap must actually match up.



248 CHAPTER 10. CONCLUSION

would find that a trivial circuit, where we mapped every abstract symbol to a
single circuit symbol, would implement every specification.)

Below the specification in our diagram we find the proof. This consists first of
an additional mapping, called the state mapping. This mapping describes the way
in which circuit state-the presence or absence of electrical charge on the ncdes of
the circuit-encodes the abstract system state. With the addition of this mapping
alone, the only additional check possible is to ensure that the mapping is indeed
defined for every abstract system state.

We needed the realization itself-shown below the proof in the figure-to make
the most significant test possible. Once we were given the realization, several more
tests became possible. First, for each of the mappings, we could have checked that
we indeed have been given a mapping onto the actual circuit. More importantly,
we could now also check obedience: that the circuit actually behaves according the
the specification.

The methodology developed here concentrated on the properties highlighted
on this diagram. These properties are the elements that are fundamental for veri-
fication. Although all of the properties in the figure are of some interest to anyone
pursuing the formal study of hardware in a broad sense, not all are essential for
verification. Consistency checks on the mappings, while desirable as a tool for the
early detection of inconsistencies, are straightforward. Properties of the specifi-
cation are extremely important, for nobody desires to prove vacuous or nonsense
statements about the systems they build. To limit the scope of this thesis, we did
not consider them in detail. Nonetheless, they are important.

10.1.2 Relation of concepts

Figure 10.2, then, maps the terrain now behind us. Let us now review its explo-
ration by illustrating the relation of a few of the concepts we developed. Figure 10.3
gives this illustration at an abstract level. The central relationship we considered
was implementation. It was defined in terms of three properties: obedience, dis-
tinction, and conformity; the latter two were fairly straightforward. Obedience
was more complicated.

Obedience was the property that the realization's behaviors were allowed by
the specification. This followed from a surjectivity condition on the mapping of
specification inputs onto realization inputs, plus containment of behaviors. If entire
behaviors were expressed as the closure under a combining operator of fragments of
behaviors, then containment of behaviors in turn followed from containment of the
fragments, plus a homomorphic condition on the mapping. Finally, containment
of the fragments followed from containment of assertions, which represent sets of
fragments, provided that the mapping was distinct and surjective.



10.2. EVALUATION 249

implementation

S fragment

containment

[dstncio inasertio

Figure 10.3: Venn diagram of concepts

10.2 Evaluation

Anyone pursuing the serious application of formal methods to real design should be
cognizant of the famous objections raised by DeMillo, Lipton, and Pelis [90]. Their

point was that mathematics and proofs are "organic." The validity of proofs (or

lack) is determined by their acceptance (or rejection) among mathematicians--not
by a decision procedure or a satisfaction relation. A proof is not its formalism. 2 A

proof is only a proof when someone reads it and is convinced. Machine-generated
listings of deductive •dteps are not proofs in this sense, because they generally

remain unread.

Evaluating the work in this thesis-and indeed, any automatic verification

technique--by that light is promising. The "proof" of correctness of Hector (for the
operations examined) consists of the specification, its mapping onto the symbolic

simulation of the microprocessor design, and this simulation itself. The tedious

details of these steps are handled algorithmically. The proofs in this methodology

that have any depth are the ones appearing here, in this thesis, where they can be

studied and understood, not the executions of the verification program, which are

to be acknowledged and filed away.

tin other words, the objection is that the working mathematician's "proof' is not the logician's

technical term of the same name, and the two cannot be interchanged freely.



250 CHAPTER 10. CONCLUSION

10.2.1 Hector vs. modern processors

It is worth reviewing Hector, the case study microprocessor, in order to compare it
to the microprocessors whose errors were mentioned in the introduction. Though
Hector is a real microprocessor and a firm step for microprocessoj verification,
there are some key differences between it and modern, commercial designs.

First, modern microprocessors are now two orders of magnitude larger than
Hector, at least by transistor count, and the trend to larger designs continues.
Performance of the verifier on Hector was barely adequate, so clearly the approach
must be modified to scale to larger designs. There are two possible ways to modify
the approach that has been presented here. First, it might be possible to decompose
the processor into components, and verify each of them separately. However, this
has the distinct drawback that it may require significant changes to the micropro-
cessor design, if it is not already expressed in terms of a workable decomposition.
A more attractive approach may be to verify at a higher level. As we observed
in Chapter 9, much of the time spent during verification was required to model
low-level aspects such as charge sharing. Such an analysis would n'nt be necessary
at a higher level, such as a gate level, or a detailed register-transfer level that still
considered all clock phases. It is difficult to estimate the performance improvement
that would occur with a higher-level simulation, but it would be quite substantial.

In terms of the scaling to larger register files and word sizes, our experience
in verifying a simple pipelined data path [47] is that the scaling of time required
is sub-quadratic in word size and sub-linear in number of registers, and memory
requirements scale more gradually. Thus, it is quite certain that 64-bit processors
can be verified.

Second, modern microprocessors are highly pipelined, and Hector is essentially
not pipelined. The practical implications of pipelining on the verification of re-
alistic circuits are not well understood. The methodology handles the overlap of
pipelining in full generality, but further experiments are required. Nonetheless,
our experiments on simple pipelines lead us to be optimistic.

Third, modern microprocessors handle exceptions. For example, if an instruc-
tion encounters a page fault, the instruction will be stopped mid-execution and a
trap handler will be invoked. After the trap handler has corrected the source of
the page fault, the interrupted instruction will be restarted-either by repeating
the entire instruction, or by continuing mid-execution. Hector, in contrast, has a
simple interrupt model in which interrupts are synchronized to instruction execu-
tion so that they occur only between instructions. Exceptions will complicate the
specification. Furthermore, verifying exceptions will be tricky. For example, we
would not want to try to verify a trap handler, since this would entail proving that
the trap handler-a program-is correct. Nonetheless, an accurate description of
the effects of exceptions on the hardware state-such as we could produce by ver-
ifying the generation of the exception itself-should be a useful aid to the authors



10.2. EVALUATION 251

of trap handlers. It seems especially important to treat exceptions well, since they
are a source of real problems, e.g., the Intel 486 bus-interface bug.

In addition, modern microprocessors contain some structures, such as multi-
pliers, whose functions cannot be compactly represented using BDDs. It may be
possible to verify some aspects of such a processor's operation, those that do not
make use of the multiplier. Such a verification would have to be carefully con-
structed. It is not sufficient merely not to verify the operation of the multiplier; it
is necessary to ensure that the multiplier is never operated with symbolic data val-
ues, lest the symbolic simulator attempt to construct BDDs to represent the result
of multiplication. Nonetheless, such an approach may be fruitful. It might also be
possible to use this approach-not verifying the multiplier-and then also adapt
a compositional approach to verify the multiplier itself separately, for example by
first checking that it computes each partial product correctly, and then checking
that it combines them correctly.

Finally, most modern microprocessors contain one or more on-chip primary
cache memories. The best approach to verifying such processors is to decompose
them at the boundary between the processor and the memory system-in other
words, to verify the processor separately from the cache. Attempting to draw the
boundary on the other side of the cache, so as to treat the processor plus cache as
a unit, entails dealing with matters such as cache consistency protocols in addition
to processor behavior.

10.2.2 Limitations

The methodology and the tool implementing the methodology suffer a number of
limitations. None of them are fatal flaws, but it is important to acknowledge that
they exist.

Limitations of the methodology

First, the methodology described here is most suited for verifying functional prop-
erties of data intensive systems, i.e., those whose operation can be thought of as
updating data values stored as components of a large stored state, in response
to a relatively small number of operations. This is reflected in our specification
notation, where each operation requires a separate assertion. Systems that are
not data-intensive, such as the state machine example of Chapter 3, developed in
Figures 3.33 and 3.34, are cumbersome to describe using our approach.

The suitability of this methodology for functional properties is reflected in
our limited notion of time, where in an assertion we consider only a state and
its successor-the bare minimum we needed to verify function. There are many
important temporal properties of systems that are not easily phrased as functional
properties: for example, absence of deadlock.



252 CHAPTER 10. CONCLUSION

We have concentrated in this thesis on verification methodology, rather than
on correctness of specifications. Obviously, specifications must be correct in order
for verification to be meaningful, but we have not fully addressed this issue here.
Toward the beginning of this chapter we briefly mentioned a few of the specification
properties that are easier to define. The correctness of a specification is not easy to
define. In general, it is another verification problem! We have simply "pushed the
problem upstairs," that is, raised the level of abstraction at which one can reason
confidently about a system. However, it is easier to reason about an abstract
specification than about a concrete circuit. One possible way to verify temporal
properties of a circuit is to use the methodology described here to verify that the
circuit implements a state machine, and then use other techniques such as symbolic
model checking [173] to reason about this state machine.

One of the principal dangers of verification is what we have called antecedent
failure. Whenever we axe checking an implication, we must remember that there are
two ways in which an implication can be true. First, the antecedent condition can
actually imply the consequent condition. This intentional interpretation is what
we generally think of an implication as meaning. However, formally, implications
have an extensional meaning: they are also true if the antecedent condition is not
true. Antecedent failure means that we can speak nonsense and not realize it. One
strength of our approach is that we can check for antecedent failure, and structure
our specifications so that antecedents never fail. While structuring a specification
this way lengthens it, it improves our confidence that the specification actually
makes sense.

Finally, our specifications are given in an unconventional format. We have
defined a new language, based on assertions rather than imperative commands,
that is quite different from most hardware description languages. Some may see
this as a drawback. It is an impediment to the widespread adoption of formal
verification, but it is necessary that formal techniques be founded on languages
with formal semantics and, furthermore, that they be based upon simple models
of computation. It is possible to derive assertions from more-conventional HDL
descriptions [1941, but it is not clear what difficulties would be encountered in
using such assertions for verification. Moreover, for complete confidence it would
be necessary to show that the procedure for deriving the assertions is correct-and
this requires a formal semantics for the HDL. So lack of connection to conventional
hardware description languages is a drawback, but this is more a limitation of
current practice than of our methodology.

Limitations of the present tool

The present verifier, which we used in verifying Hector, has a number of limitations.
These are not limitations of the methodology; they are characteristics of the tool.

In comparing Hector to more recent microprocessors, above, we have already



10.3. FUTURE WORK 253

mentioned that multipliers cannot be verified automatically with BDD-based tech-
niques. We must await better representations for Boolean functions in order to
verify multipliers automatically.

The present tool, and the CAMP language (which has not been implemented),
cannot deal with unbounded wait states. For example, consider a multiprocessor
with a large distributed memory system. If a data value is present in a processor's
local cache, the processor can access it in a single cycle, but if the data value is
not cached, the processor must wait for it to be fetched. In a large multiprocessor,
there could be significant contention for cache lines and system busses, leading to
a large number of possible latencies. If the latency could be bounded, it would be
possible to write a specification that allowed for a latency of 1 clock cycle, or of
2 or 3, etc., up through the bound. This would be cumbersome in practice and
a.1 but impossible to verify, as the system was simulated first with 1-cycle latency,
then again with 2, etc. It would be conceptually straightforward to remedy this
by add. iag a fixed-point computation to the tool, and a corresponding construct to
the language.

Some of the debugging facilities of the current tool are not ideal. In particular,
if the size of the BDDs becomes extremely large so that performance becomes poor,
there is no good debugging technique. It is possible in the tool to interrupt the
verification and examine the BDDs, but as the BDD package is not designed to be
reentrant and allow for concurrent access, this is prone to crashes, and verification
cannot be continued after such an interruption. Structuring the program so as
to allow reentrant use, such as by developing a BDD package allowing concurrent
use by multiple threads of control, could make interactive use of this and other
BDD-based sy.+ rns more attractive.

Finally, the present tool is tied quite tightly to the Cosmos switch-level sim-
ulation system. It might be difficult to generalize to another simulation model,
although it would be possible to make use of existing intermediate formats used
by Cosmos. It would be useful to generalize to another simulation model for two
reasons. The first is performance, as discussed above. The second is the time
within the design cycle. The switch level is reached comparatively late during the
design of a system.' It would be preferable to begin verification sooner, so as to
detect errors earlier.

10.3 Future work

The goal of research in formal verification is to eliminate harmful design errors
without compromising design goals. The work outlined in this thesis is only a step
toward that goal.

'ZVorcizy -.t!. cic,:=it is extracted from layout!



254 CHAPTER 10. CONCLUSION

Possible continuations of this work may be divided into theory, tools, and
circuits. Theory is the crucial foundation. Without reliable formalisms there can
be no formal verification. Tools are the crucial superstructure. Without them the
theory cannot be applied. Circuits are the touchstone. The continued verification
of circuits is needed to ensure that tools and techniques remain applicable to
important designs.

10.3.1 Theory

Several relatively small theoretical steps would be helpful in advancing this re-
search. To better connect it with other work, one could develop a formal relation-
ship between the model of computation used here and other formal models such
as the various process calculi (sometimes termed process algebras) [182], Kripke
structures [74], or languages such as SMV [173].

Another possible connection to make with existing work is to formalize this
methodology more precisely, by working within an existing automated proof system
based on some foundational branch of mathematics, such as HOL. The first step
here would be to develop the theory of marked strings within the HOL system.

This thesis has presented a specification language SMAL and a mapping lan-
guage CAMP, but it has given a formal semantics for only a subset of each of these
languages. In addition, the definition of SMAL is not complete, for it refers to a
library of useful functions that has been left unspecified. Defining the semantics for
the full languages and defining and writing the function library would be necessary
in order to build a tool based on these languages.

The specification of the Hector microprocessor was cluttered with a number of
statements that had to be specified in slightly different ways for slightly different
instructions. Defining a specification language based on a non-monotonic logic
[108] would allow specifications to be written more concisely by allowing defaults
to be written only once. This would entail fundamental changes throughout the
methodology.

Decomposition has not been fully treated in this thesis. The discussion of
decomposition given here remained at the level of behaviors, and was not carried
through to individual transitions. This should be done. Some way of reasoning
about serial composition of specification transitions to yield "supertransitions"
(possibly using combining forms similar to those of Hoare logics of programs) would
be necessary in order to reason about components that operate at different time
scales-a processor and memory, for example, do operate on different scales. One
possibility would be to represent transitions of the specification level as marked
strings instead of pairs of states. Ultimately, decomposition should be automatic,
starting from an instruction set and a memory specification like the example on
p. 93.



10.3. FUTURE WORK 255

Finally, we conjecture4 that distinction-the requirement that state mappings
be distinct-is actually a stronger property than is required. It is actually sufficient
that the mapping, together with the set of assertions, satisfy a similar but weaker
condition, namely that for each pair of assertions A1 =4 C1 and A2 =• ( that if
A1 n A2 # 0 then I(C 1 n C2) = I(C,) n I(C 2). It would be useful to phrase this
conjecture in terms of marked strings and prove it correct. For example, this would
remove the need for the dummy depth counter in verifying Mead and Conway's
stack.

10.3.2 Tools

A number of tool improvements and extensions are possible. First, SMAL and
CAMP, the specification and mapping languages, should be implemented. Second,
conformity and distinction were not fully automated, and they must be imple-
mented in any generally applicable and useful tool supporting this methodology.

The mapping language seems the natural place for a graphical notation based
on extended timing diagrams, perhaps similar to those of Borriello [22). Here
one question is whether the diagrams or the text should be primary-should the
notation consist of diagrams annotated with text, or text annotated with diagrams?
Alternatively, perhaps a dual-view editor could be built, in which neither notation
held primacy over the other.

Finally, generalization of the trajectory-evaluation implementation away from
the switch level to higher level models is necessary for reasonable performance on
large circuits. One drawback we identified in the current implementation is the
low level of the switch model. Performing the symbolic simulation at this level
sometimes resulted in the detailed analysis of conditions that do not affect circuit
operation, such as charge sharing in isolated segments of internal paths through
multiplexors, or transient charge sharing during transitions on busses. Simulating
at a higher level would reduce the time required for simulation by eliminating such
analysis. It would also reduce the space required by the BDDs, since the BDDs
representing the effects of such unimportant actions would not be built.

As our example with Hector illustrated, to be most useful the model of a system
for verification should be an accepted, existing model. The current implementation
of the verifier is based on the Cosmos switch-level simulator, so it uses its model,
and in particular, its set of data values.

Other simulators use other sets of data values. For example, many simulators
allow a high-impedance (or "Z") value in addition to 0, 1, and X. Often the sets
are larger. For example, though VHDL does not define a set of values, the recently-
standardized convention among its users is to use a nine-valued model. The values
are uninitialized, forcing zero, forcing one, forcing unknown, high impedance, weak

4We have been able to prove a similar condition for sets, but not yet for marked strings.



256 CHAPTER 10. CONCLUSION

X

0 1

W

H L

U

Figure 10.4: A possible partial order for the VHDL 9-valued model.

zero, weak one, weak unknown, and don't care [69, sidebar].
In order to build a verifier capable of applying symbolic simulation to such a

model, it is necessary for the model to meet at least three criteria. First, the model
must be symbolic. In practice, this can be achieved for any simulator based on
Boolean operations over encoded system state by replacing the Boolean operations
on values with the corresponding operations on BDDs. Second, the set of values
must be partially ordered, e.g., as in Figure 10.4. Finally, the model must be
monotonic with respect to a partial order. For the simple structure of the Cosmos
partial order, monotonicity was easy to guarantee, but for more complex orders
this may not be trivial.

Representations for Boolean functions that improve upon BDDs in some way
are currently a very active area of research, and progress in this area might be
reflected in a tool. For example, we have pointed out that antecedent failure and
symbolic indexing interact poorly. Perhaps read-k-times BDDs might be useful,
since the failing variables could appear at two different locations within the variable
ordering.

Usability and bookkeeping facilities would be needed in a tool. For example,
it is important to to realize that it is not necessary to repeat past successful
checks when changes to a specification are cosmetic, or when they weaken the
specification.

Finally, supporting conventional HDL's in some way will be crucial to the use
of a tool by designers-even if the purpose is to capture their attention suifficiently
to explain the advantages of declarative specification. The methodology presented
here is based on having a declarative specification written as a set of assertions.
Some may perceive this as a drawback rather than as an advantage.



10.3. FUTURE WORK 257

There are two principal objections. First, executable specifications have re-
ceived some attention recently, but a set of assertions is not easily viewed as an
executable specification. Second, the language is new, not being based on an ex-
isting language.

Executable specifications have lately received some attention. A specification
is a representations of a designer's intention. The argument in favor of executable
specifications says that specifications which can be executed are more likely to
actually reflect the designer's intent. After all, the argument goes, the designer
can check the specification by executing it.

This is a reasonable argument, and it is likely to be compelling in some circum-
stances. However, executable "specifications" demand implementation details in
order to make them executable. Thus, part of the design task becomes intertwined
with the specification task.

For example, consider the stack we have so frequently referred to as an example
in this thesis. Suppose that it is specified in a language such as Verilog by writing
code to accomplish the effects of the "push" and the "pop" operations. The "push"

may be accomplished by iterating up through the stack from the bottom, mov-
ing data down. The "pop" may be accomplished by iterating down through the
stack from the top, moving data up. Such a specification introduces considerable
machinery-an index of iteration, and the proper sequencing of the assignment
statements that move data-in order to express the data movement. Thus, such
a specification is implicitly a moving-data stack. Suppose a stack circuit is imple-
mented with an array plus a pointer to the top location. A necessary step is then
to somehow winnow the effect of each operation from the implementation details
of the so-called specification.

Another possible objection is that the specification language described here
is new, while an existing language would suffice. However, existing hardware de-
scription languages are oriented to simulation. In order to support simulation, they
include features such as timing, explicit discrete-event management, and large sets
of signal values. Such things are needed in order to describe how a digital system
operates. However, they are inherently imperative. Instead of specifying what a
system does, specifications in such a language tell how to do what the system does.
In other words, they make implementation decisions. Because existing HDL's are
designed to be executed, specifications written in them will be executable. In its
essence, then, the original objection in favor of executable specifications subsumes
this second objection.

Nonetheless, the reality of the CAD engineer trying to adopt formal verification
within an existing design methodology dictates that some attention be given to
an incremental approach: one where specifications can be given in an existing

5usually a textual representation



258 CHAPTER 10. CONCLUSION

HDL, even if the result is not optimal.6 At the same time, a system build for
such an approach should include more powerful facilities, to be used by the more
adventurous users, or by others once the inadequacy of imperative specification
becomes clear to them. The toughest problem in introducing formal verification
to industry may well be a language problem, one which transcends most questions
of methodology, models, and algorithms. To continue with existing HDL's like
VHDL and Verilog requires great care, as such languages lack formal semantics. It
is necessary to found formal verification on a firm basis. Introducing a tool based
on some ill-conceived, ad-hoc pseudo-formal subset of an HDL would ultimately
set back the acceptance of formal verification.

In an industry roundtable discussion held at ICCD [66], several researchers con-
sidered what would be necessary for practicing designers to adopt formal methods.
The participants first defined formal verification as involving proof and starting
from a specification. This includes synthesis approaches attempting to yield de-
signs that are correct by construction. Fourman cautioned that correctness-by-
construction claims were made about compiler optimizations despite lack of good
underlying formalism. The participants agreed that engineers could and would
handle the formaiism once its benefits were clear and the supporting tools were us-
able. One immediate direction for a first step that emerged was to make hardware
description languages more suitable to fcrma! vcrification.

Such an approach contains several challenging problems. The extension of an
HDL to include assertions should not be difficult, since assertions are simple. (Re-
call that in Chapter 3 we defined both their essential syntax and formal semantics
in a half-dozen pages.) But the integration of formal verification with an existing
HDL will be mined with pitfalls.

Not the least of the problems is the question of the language's semantics. Most
hardware description languages-indeed, most programming languages-lack a for-
mal semantics. Rare exceptions such as LDS [166] were those designed with formal
verification in mind. This is not a serious impediment for practical application.
Existing practice bears this out. However, formal verification requires formal spec-
ification. Formal specification requires formalism. If the "formalism" is actually
lacking, the enterprise falls apart, like a chain whose last link is of clay. Though
the specification language need not be spelled out entirely in foundational mathe-
matics, some assurance is needed that its terms denote precisely defined objects.
Moreover, it is not necessary to formalize all of an HDL to use it for formal specifi-
cation, provided that users restrict themselves to a formal subset (with appropriate
support from tools).

Assuming that a suitable semantics exists for a subset of an existing hardware
description language such as Verilog or VHDL, three problems are immediately

6 This section benefited from discussion with Alok Jain, and his specification of a stack in
Verilog.



10.3. FUTURE WORK 259

identifiable. First, there must be some way to convert imperative descriptions to
assertions. This likely requires the generation or synthesis of a set of specification
case variables from the specification. Since these will in turn be encoded with
BDD variables, the interaction of the variables must be carefully considered, or
the variable-ordering heuristics made available to the user.

Extracting the variables is only one part of the problem of converting an im-
perative description to declarative form. There are several possibilities. Data-flow
analysis, in the style of optimizing compilers, could be used to extract the compu-
tation a system performs from its expression as a program. Alternatively, it might
suffice to define a set of simple restrictions that, when obeyed by the specification,
would allow a simpler analysis to suffice. Dealing with conditional execution in
the HDL will be a challenge, and it is likely that a procedure such as Madre's use
of "contexted variables" [166] will be necessary.

10.3.3 Circuits

In verifying additional circuits, care should be taken to ensure that the choice of
circuits leads to advances. In addressing the differences between Hector and more
modern processors, one place to start would be with simple pipelines that allow
interrupts or exceptions. Such toy circuits would allow the development of insight
into the difficult issues without confronting the incidental problems of working
with real designs. It might also be useful to verify a content-addressable memory
(CAM) as a first step toward verifying a cache (since cache tags are stored in
CAM).

Later, more modern processors should be verified. Lou Scheffer has suggested
that condition codes are an especially likely source of errors [2171. In particular,
the original Berkeley RISC processor had condition-code errors, which were dif-
ficult to find, and which required that the compiler generate extra code to work
around them. Demonstrating a tool capable of finding these errors would be a very
convincing example of the utility of verification.

One possible processor to verify would be the "Tiny RISC." This processor
was designed by Abnous and his colleagues at UC Irvine [2] as a core functional
unit for a VLIW architecture, or as a control processor embedded in a larger
chip. It is a 16-bit processor implemented with about 12000 transistors, which
achieves 14 MIPS in its first silicon (MOSIS 2-micron CMOS n-well). It appears
to be similar to conventional RISC designs, although the complexity of bypassing
a VLIW dictated the elimination of the MEM pipe stage to reduce the number of
possible dependencies. The small size of this processor should ease tool concerns
while allowing concentration on the issues of verifying a pipelined RiSC.

It might also be instructive to verify an implementation of a widely used text-
book example, such as DLX [198]. While this might not constitute a direct research
advance, it would serve as an example that would be accessible to a wide audience.



260 CHAPTER 10. CONCLUSION

Finally, if the ultimate goal of verification is to attain currency with state-
of-the-art design techniques, it will be necessary to deal with superpipelined and
superscalar designs. Although we have given multiple-issue systems some thought
in our development of marked strings, we have not given this area serious study.
The approach of starting with simple examples seems useful, but so far we hare
unaware of any simple superscalar designs.

10.4 Final remarks

This thesis has established that it is possible to take simulation models of pipetined
systems-even detailed circuit models expressed with existing design techniques.
and relate them to straightforward state machines expressed declaratively. Along
the war, it has considered

"* what it means for a system to implement a specification, in a general way.

"* a model of computation appropriate for both high-level, abstract specifica-
tions and low-level circuit details,

"* an approach to establishing implementation between a system and its speci-
fication.

"* a formalism. called marked strings, for reasoning about short overlapped
intervals oi computation,

"* the specification of an existing microprocessor's instruction set,

"* a digression into the decomposition of a processor from its memory svstem.

"* the identification and expression of correspondences between the instruction
set state and the microprocessor circuit, and

"* the verification of the microprocessor.

We have seen that the possibility of formal specification and verification as a
routine part of the design of complex digital systems such as microprocessors holds
promise. We remain far from this goal. but it is reachable. This thesis has laid
a foundation for verification and framed sufficient support for an example based
on an existing design. It has answered the challenge that formal meth,.ds are
a mere academic exercise, by responding with a counterexample consisting of a
real design of significant size. and thereby raised the standard of evaluation for
hardware verification. It has also shown bv its use of an existing simulation model
that formal methods, at least in this context, need not represent a break with the
past. bu the improving evolution of existing practice.



Bibliography

[1] Martin Abadi and Leslie Lamport. The existence of refinement mappings.
Proceedings of Third Annual Symposium on Logic in Computer Science (Ed-
inburgh, 5-8 July 1988), pages 165-75. IEEE Computer Society Press, 1988.

[2] Arthur Abnous, Christopher Christensen, Jeffrey Gray, John Lenell, An-
drew Naylor, and Nader Bagherzadeh. Design and implementation of the
'Tiny RISC' microprocessor. Microprocessors and Microsystems, 16(4):187-
93, 1992.

[3] Filip Van Aelten and Jonathan Allen. Efficient verification of VLSI circuits
based on syntax and denotational semantics. Applied Formal Methods for
VLSI (Leuven, Belgium), pages 188-97, Luc M. Claesen, editor. North-
Holland, Amsterdam, 1989.

[4] Gregory R. Andrews and Fred B. Schneider. Concepts and notations for
concurrent programming. ACM Computing Surveys, 15(1):3-43, March 1983.

[5] Peter B. Andrews. An Introduction to Mathematical Logic and Type Theory:
to Truth through Proof. Academic Press, London and New York, 1986.

[6] C. M. Angelo, D. Verkest, L. Claesen, and H. De Man. A synopsis on the
comparison of HOL and Boyer-Moore for formal hardware verification. Correct
Hardware Design Methodologies: Proceedings of Advanced Research Workshop
(Turin, Italy, 12-14 June 1991), pages 421-6. North-Holland, Amsterdam,
1992.

[7] Bill Arnold. Scarcity, bugs plague 68040; Motorola says ramp up is underway.
EDN, 7 March 1991. Abstracted in [80].

[81 Larry M. Augustin, Benoit A. Gennart, Youm Huh. David C. Luckham, and
Alec G. Stanculescu. Verification of VHDL designs using VAL. 25th Design
Automation Conference, pages 48-53, June 1988.

[9] Cyrus Bamji and Jonathan Allen. GRASP: a grammar-based schematic
parser. 26th Design Automation Conference, pages 448-53, 1989.

261



262 BIBLIOGRAPHY

[10] Harry G. Barrow. VERIFY: a program for proving correctness of digital
hardware designs. Artificial Inteligence, 24:437-91, 1984.

[11] Harry G. Barrow. Proving the correctness of digital hardware designs. VLSI
Design, V(7):64-77, July 1984.

[12] Joel F. Bartlett. Scheme->C: a portable Scheme-to-C compiler. Research
Report number 89/1. Digital Equipment Corporation Western Research Lab-
oratory, Palo Alto, CA, January 1989.

[13] D. A. Basin, G. M. Brown, and M. E. Leeser. Formally verified synthesis of
combinational CMOS circuits. Integration, the VLSI Journal, 11(3):235-50,
June 1991. Citation obtained from Inspec.

[14] Derek Beatty, Karl Brace, Randal E. Bryant, Kyeongsoon Cho, and Lawrence
Huang. User's guide to COSMOS: a compiled simulator for MOS circuits.
Computer Science Department, Carnegie-Mellon University, Pittsburgh. PA,
October 1987.

[15] Derek L. Beatty, Randal E. Bryant, and Carl-Johan H. Seger. Synchronous
circuit verification by symbolic simulation: an illustration. Advanced Research
in VLSI: Proceedings of the 6th MIT Conference, pages 98-112. MIT Press,
March 1990.

[16] William R. Bevier. Kit and the short stack. Journal of Automated Reasoning,
5:519-30, 1989.

[17] William R. Bevier, Warren A. Hunt Jr., J. Strother Moore, and William D.
Young. An approach to systems verification. Journal of Automated Reasoning,
5:411-28, 1989.

[18] Jean Paul Billon and Jean Christophe Madre. Original concepts of Priam, an
industrial tool for efficient formal verification of combinational circuits. The
Fusion of Hardware Design and Verification (Glasgow, 4-6 July 1988), pages
487-501, G. Milne, editor. Elsevier Science Publishers, 1988.

[19] Robert L. Blackburn. Relating Design Representations in an Automated IC
Design System. PhD thesis, published as Technical report CMUCAD-88-45.
Carnegie-Mellon University, Pittsburgh, PA, October 1988.

(20] Gregor V. Bochmann. Hardware specification with temporal logic: an exam-
ple. IEEE Transactions on Computers, C-31(3):223:231, March 1982.

[21] 1. Bolsens, W. De Rammelaere, L. Claesen, and H. De Man. Electrical debug-
ging of synchronous MOS VLSI circuits exploiting analysis of the intended
logic behavior. 26th Design Automation Conference, pages 513-18, 1989.



BIBLIOGRAPHY 263

122] Gaetano Borriello. A New Interface Specification Methodology and Its Ap-
plication to Transducer Synthesis. PhD thesis, published as Technical report
UCB/CSD 88/430. University of California at Berkeley, May 1988.

[23] D. Borrione, P. Camurati, J. L. Paillet, and P. Prinetto. A functional approach
to formal hardware verification: the MTI experience. International Conference
on Computer Design, pages 592-5, 1988.

[24) D. D. Borrione, L. V. Pierre, and A. M. Salem. Formal verification of VHDL
descriptions in the Prevail environment. IEEE Design and Test of Computers,
9(2):42-56, June 1992.

[25] Dominique Borrione, Laurence Pierre, and Ashraf Salem. PREVAIL: a proof
environment for VHDL descriptions. Correct Hardware Design Methodologies:
Proceedings of Advanced Research Workshop (Turin, Italy, 12-14 June 1991),
pages 163-86. North-Holland, Amsterdam, 1992.

[26] Soumitra Bose and Allan L. Fisher. Automatic verification of synchronous
circuits using symbolic logic simulation and temporal logic. Applied Formal
Methods for VLSI (Leuven, Belgium), pages 759-64, 1989.

[27] Soumitra Bose and Allan L. Fisher. Verifying pipelined hardware using sym-
bolic logic simulation. International Conference on Computer Design, 1989.

[28] R. T. Boute. Declarative languages-still a long way to go. Computer Hard-
ware Description Languages and their Applications, pages 165-92. Elsevier
Science Publishers, April 1991.

[29] Raymond T. Boute. Current work on the semantics of digital systems. Formal
Aspects of VLSI Design, pages 99-112, G. Milne and P. A. Subrahmanyam,
editors. Elsevier Science Publishers, 1986.

[30] Jonathan Bowen. The formal specification of a microprocessor instruction set.
Technical report, technical monograph PRG-60. Oxford University, Comput-
ing Laboratory, January 1986.

[31] Jonathan Bowen. The formal specification of a microprocessor instruction
set. technical monograph PRG-60. Oxford University Computing Laboratory,
January 1987.

[32] Robert S. Boyer and Yuan Yu. A Formal Specification of Some User Mode
Instructions for the Motorola C8020. Technical report TR-92-04. Department
Computer Science, University Texas at Austin, February 1992.



264 BIBLIOGRAPHY

[33] B. Brock and W. A. Hunt, Jr. Report on the formal specification and partial
verification of the VIPER microprocessor. COMPASS '90: Proceedings of
Fifth Annual Conference on Computer Assurance, Systems Integrity, Software
Safety and Process Security (Gaithersburg, MD, 24-27 June 1991), pages 91-
8. IEEE, June 1991.

134] Bishop C. Brock, Warren A. Hunt Jr, and William D. Young. An introduction
to a formally defined hardware description language. Technical report 76.
Computational Logic, Incorporated, Austin, Texas, April 1992.

[35] A. Bronstein and C. L. Talcott. Formal verification of synchronious cir-
cuits based on string-functional semantics: the 7 Paillet circuits in Boyer-
Moore. Automatic Verification Methods for Finite State Systems: Interna-
tional Workshop (Grenoble, 12-14 June 1989), number 407 in Lecture Notes
in Computer Science, Joseph Sifakis, editor. Springer Verlag, Berlin, 1989.

[36] Alexandre Bronstein. MLP: String-Functional Sewantics and Boyer-Moore
Mechanization for the Formal Verification of Synchronous Circuits. PhD the-
sis, published as Technical report STAN-CS-89-1293. Department of Com-
puter Science, Stanford University, December 1989.

[37] Alexandre Bronstein and Carolyn L. Talcott. String-functional semantics for
formal verification of synchronous circuits. Technical report STAN-CS-88-
1210. Department of Computer Science, Stanford University, June 1988.

[38] Carolyn Van Brussel. Chip shipments stalled by Intel testing problems. Com-
puting Canada, 26 September 1991. Abstracted in [80].

[39] Randal E. Bryant. A Switch-Level Simulation Model for Integrated Logic Cir-
cuits. PhD thesis. MIT, Cambridge, MA, 1981.

[40] Randal E. Bryant. Symbolic verification of MOS circuits. Chapel Hill Con-
ference VLSI, page 419:438, 1985.

[41] Randal E. Bryant. Symbolic verification of MOS circuits. Technical report
CMU-CS-85-120. Computer Science Department, Carnegie-Mellon Univer-
sity, Pittsburgh, PA, 1985. A preliminary version was presented as [40].

[42] Randal E. Bryant. Can a simulator verify a circuit? Formal Aspects of VLSI
Design, pages 125-6, G. J.Milne and P. A. Subrahmanyam, editors. North-
Holland, Amsterdam, 1986.

[43] Randal E. Bryant. Boolean analysis of MOS circuits. IEEE Transactions on
Computer-Aided Design, CAD-6(4):634-49, 1987.



BIBLIOGRAPHY 265

[44] Randal E. Bryant. A survey of switch-level algorithms. IEEE Design and Test
of Computers, 4(4):26-40, 1987.

[45] Randal E. Bryant. Verifying a static RAM design by logic simulation. Ad-
vonced Research in VLSI: Proceedings of 5th MIT Conference, page 335:349,
1988.

[46] Randal E. Bryant. Verification of synchronous circuits by symbolic logic sim-
ulation. Hardware Specification, Verification, and Synthesis: Mathematical
Aspects, number 408 in Lecture Notes in Computer Science, Miriam Leeser
and Geoffrey Brown, editors. Springer Verlag, Berlin, 1989.

[47] Randal E. Bryant. A methodology for hardware verification based on logic
simulation. Journal of the ACM, April 1991.

[48] Randal E. Bryant. Graph-based algorithms for Boolean function manipula-
tion. IEEE Transactions on Computers, C-35(8):677-91, August 1986.

[49] Randal E. Bryant. A switch-level model and simulator for MOS digital sys-
tems. IEEE Transactions on Computers, C-33(?):160-77, February 1984.

[50] Randal E. Bryant. On the complexity of VLSI implementations and graph
representations of Boolean functions with application to integer multiplica-
tion. IEEE Transactions on Computers, 40(2):205-13, February 1991.

[51] Randal E. Bryant. Algorithmic aspects of symbolic switch network analy-
sis. IEEE Transactions on Computer-Aided Design, CAD-6(4):618-33, July
1987.

[521 Randal E. Bryant. A methodology for hardware verification based on logic
simulation. Technical report CMU-CS-87-128. Computer Science Depart-
ment, Carnegie-Mellon University, Pittsburgh, PA, June 1987. Published as
[39].

[53] Randal E. Bryant. An algorithm for MOS logic simulation. Lambda Magazine,
1(4):22-30, September 1980.

[54] Randal E. Bryant. Symbolic Boolean manipulation with ordered binary-
decision diagrams. A CM Computing Surveys, 24(3):293-318, September 1992.

[55] Randal E. Bryant, Derek Beatty, Karl Brace, Kyeongsoon Cho, and Thomas
Sheffler. COSMOS: a compiled simulator for MOS circuits. 24th Design
Automation Conference. Also reprinted in [192], 1987.



266 BIBLIOGRAPHY

[561 Randal E. Bryant, Derek L. Beatty, and Carl-Johan H. Seger. Formal hard-
ware verification by symbolic ternary trajectory evaluation. 28th Designl Au-
tomation Conference, 1991.

[573 Randal E. Bryant and Carl-Johan Seger. Formal verification of digital circuits
using symbolic ternary system models. Technical report CMU-CS-90-131.
SCS., Carnegie-Mellon University, Pittsburgh, PA, 1990. Also available as
[58].

[58] Randal E. Bryant and Carl-Johan Seger. Formal verification of digital circuits
using symbolic ternary system models. Computer-Aided Verification (Rutgers
NJ.), June 1990.

[59] J. A. Brzozowski and C. J. Seger. A unified framework for race analysis of
asynchronous networks. Journal of the ACM, 36(1):20-45, January 1989.

[60] Janusz A. Brzozowski and Michael Yoeli. Digital /Networks, Series in Auto-
matic Computation. Prentice-Hall, Englewood Cliffs, NJ, 1976.

[61] Jerry R. Burch. Trace Algebra for Automatic Verification of Real-Time Con-
current Systems. PhD thesis, published as Technical report CMU-CS-92-179.
Department of Computer Science, Carnegie-Mellon University, Pittsburgh,
PA, August 1992.

[62] Steven Burke. Intel delivers on 486; IBM first to market; Power Platform in
short supply. PC Week, 9 October 1989. Abstracted in [80].

[63] A talk with Intel: designers of Intel's 386, i486, and future microprocessors
talk about what lies ahead in CPU design. Byte, April 1991. Abstracted in
[80).

[64] Albert John Camilleri. Simulation as an aid to verification using the HOL
theorem prover. Design Methodologies for VLSI and Computer Architecture:
Proceedings of IFIP TC1O Working Conference (Pisa, Italy, 19-21 September
1988), pages 148-68, D. A. Edwards, editor. North-Holland, Amsterdam,
1988.

[65] Albert John Camilleri. Simulation as an aid to verification using the HOL
theorem prover. Technical report 150. University of Cambridge Computer
Laboratory, October 1988.

[66] Paolo Camurati, Shiu-Kai Chin, Michael Fourman, Carl Pixley, Paolo
P,'inetto, and Atsushi Takahara. Formal verification: is it practical for real-
world design? IEEE Design and Test of Computers, 6(6):50:58, December
1989. Roundtable discussion held at ICCD.



BIBLIOGRAPHY 267

[67] Paolo Camurati and Paolo Prinetto. Formal verification of hardware correct-
ness: an introduction. Computer Hardware Description Languages and their
Applications: Proceedings of the IFIP WG 10.2 Eighth International Con-
ference (Amsterdam, 27-29 April 1987), pages 225-47, M. R. Barbacci and
C. J.Koomen, editors. North-Holland, Amsterdam, 1987.

[68] Paolo Camurati and Paolo Prinetto. Formal verification of hardware correct-
ness: introduction and survey of current research. IEEE Computer, 21(7):8-
19, July 1988.

[69] Michael Carroll. VHDL-panacea or hype? IEEE Spectrum, pages 34-7, June
1993.

[70] Intel finds bug in 50MHz 80486, suspends ships for a week or so. Computer-
gram International, 28 August 1991. Cited in [80].

[71] Shiu-Kai Chin. Verified functions for generating signed-binary arithmetic
hardware. IEEE Transactions on Computer-Aided Design, 11(12):1529-58,
December 1992.

[72] L. Claesen, D. Borrione, H. Eveking, G. Milne, J. L. Paillet, and P. Prinetto.
CHARME: towards formal design and verification for provably correct VLSI
hardware. Correct Hardware Design Methodologies: Proceedings of Advanced
Research Workshop (Turin, Italy, 12-14 June 1991), pages 3-25. North-
Holland, Amsterdam, 1992.

[73] E. M. Clarke, J. R. Burch, K. L. McMillan, and David L. Dill. Sequential
circuit verification using symbolic model checking. 27th Design Automation
Conference, June 1990.

[74] E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic verification of finite-
state concurrent systems using temporal logic specifications. ACM Transac-
tions on Programming Languages and Systems, 8(2):244-63, April 1986.

[75] E. M. Clarke and 0. Griimberg. Research on automatic verification of finite-
state concurrent systems. Annual Review of Computer Science, pages 269-90,
1987.

[76] Edmund Clarke. Applications of Hoare logic to circuit simulation, October
1989. Unpublished notes.

[77] Avra Cohn. The notion of proof in hardware verification. Journal of Auto-
mated Reasoning, 5:127-39. Kluwer Academic Publishers, Boston, 1989.



268 BIBLIOGRAPHY

[78] Avra Cohn. Correctness properties of the Viper block model: the second level.
Technical report 134. University of Cambridge Computer Laboratory, May
1988.

[79] H61ýne Collavizza. Functional semantics of microprocessors at the micropro-
gram level and correspondence with the machine instruction level. Proceedings
of the European Design Automation Conference (Glasgow, 12-15 March 1990),
pages 52-6. IEEE Computer Society Press, 1990.

[80] Computer Database. Information Access Company, Foster City, CA, 1993.
Online database, accessible through CMU library.

[81] Francisco Corella. Automated verification of behavioral equivalence for mi-
croprocessors. Research report RC 17751 (#78056). IBM Research Division,
27 February 1992.

[82] W. E. Cory. Symbolic simulation for functional verification with ADLIB and
SDL. 18th Design Automation Conference, 1981.

[83] Warren E. Cory. Verification of Hardware Design Correctness: Symbolic Ex-
ecution Techniques and Criteria for Consistency. PhD thesis, published as
Technical report 83-241. Computer Systems Laboratory, Stanford University,
June 1983.

[84] Oliver Coudert, Christian Berthet, and Jean Christophe Madre. Verifica-
tion of sequential machines using Boolean functional vectors. IMEC-IFIP
International Workshop on Applied Formal Methods for Correct VLSI Design
(Leuven, Belgium), pages 111-28, 1989.

[85) Olivier Coudert, Jean Christophe Madre, and Christian Berthet. Verifying
Temporal Properities of Sequential Machines Without Building their State
Diagrams. Computer-Aided Verification (Rutgers, NJ), June 1990.

[86] Steven D. Crocker, Eve Cohen, Sue Landauer, and 1ilarie Orman. Reveri-
fication of a microprocessor. Proceedings of 1988 IEEE Symposium Security
and Privacy, pages 166-76. IEEE, April 1988.

[87] Luis Damas and Robin Milner. Principle type-schemes for functional pro-
grams. Proceedings of 9th ACM Annual Symposium on Principles of Pro-
gramming Languages, pages 207-12, 1982.

[88] Joh.. A. Darringer. The application of program verification techniques to
hardware verification. Design Automation Conference, 1979. Also reprinted
in [192].



BIBLIOGRAPHY 269

[89] B. S. Davie. Hardware description languages: some recent developments.
Technical report CSR-198-86. University of Edinburgh, April 1986.

[90] Richard A. DeMillo, Richard J. Lipton, and Alan J. Perlis. Social processes
and proofs of theorems as programs. Communications of the A CM, 22(5):271-
80, May 1979.

[91] S. Devadas and K. Keutzer. An automata-theoretic approach to behavioral
equivalence. Integration, the VLSI Journal, 12(2):109-29, December 1991.
Citation from INSPEC.

[92] Inderpreet Singh Dhingra. Formalising an integrated circuit design style in
higher order logic. PhD thesis, published as Technical report 151. University
of Cambridge, Computer Laboratory, 1988.

[93] David L. Dill. Trace Theory for Automatic Hierarchical Verification of Speed-
Independent Circuits. PhD thesis, published as Technical report CMU-CS-
88-119. Carnegie-Mellon University, Pittsburgh, PA, February 1988.

[94] R. Kent Dybvig. The Scheme Programming Language. Prentice-Hall, Engle-
wood Cliffs, NJ, 1987.

[95] M. Yoeli (editor). Formal Verification of Hardware Design. IEEE Computer
Society, Los Alamitos, CA, 1991.

[96] Michael Slater (editor). 68040 performance and errata update. Microprocessor
Report, 5(11):4-5, 12 June 1991.

[97] Michael Slater (editor). Microprocessor Report, 1989. Various issues.

[98] Michael Slater (editor). Microprocessor Report, 1990. Various issues.

(99] Intel delays debut of P5 processor. Electronic News, 27 July 1992. Abstracted
in [80].

[100] Rolf Ernst and Jayaram Bhasker. Simulation-based verification for high-level
synthesis. IEEE Design and Test of Computers, page 14:20, March 1991.

[101] Hans Eveking. Axiomatizing hardware description languages. International
Journal of Computer Aided VLSI Design, 2:263-80, 1990.

[102J Hans Eveking. Experience in designing formally verifiable HDL's. Com-
puter Hardware Description Languages and their Applications, pages 321-34.
Elsevier Science Publishers, 1991.



270 BIBLIOGRAPHY

[103] Kenneth W. Fernald, Todd A. Cook, Thomas K. Miller III, and John J. Pau-
los. A microprocessor-based implantable telemetry system. IEEE Computer,
24(3):23-30, March 1991.

1104) Lawrence M. Fisher. Intel is putting new chip on hold. New York Times, 28
August 1991. Abstracted in [80].

[1053 Lawrence Flon and Jayadev Misra. A unified approach to the specification
and verification of abstract data types. Technical report TR-80. Computer
Science Department, University of Southern California, 1978.

[106] Michael J. Foster. Syntax-directed verification of circuit function. VLSI
Systems and Computations, pages 203-12, Kung, Sproul, and Steele, editors.
Computer Science Press, 1981.

[107] Masahiro Fujita, Hisanori Fujisawa, and Yusuke Matsunaga. Variable or-
dering algorithnms for ordered binary decision diagrams and their evaluation.
-IEEE Transactions on Computer-Aided Design, 12(1):6-12, January 1993.

[108] Michael R. Genesereth and Nils J. Nilsson. Logical Foundations of Artificial
Intelligence. Morgan Kaufmann Publishers, 1987.

[1091 Susan L. Gerhart. Application of formal methods: developing virtuoso soft-
ware. IEEE Software, pages 7-11, September 1990.

[1101 Brian Gillooly ape Wendy Goldman Rohm. New chip expected; Intel's prob-
lems began whe i Compaq discovered two significant bugs in the chip. Com-
puter Reseller •ews, 30 October 1989. Abstracted in [80].

[111] Caryn Gillooly. Intel chip woes may delay new superserver models. Network
World, 2 September 1991. Abstracted in [80].

[112] Seymour Ginsburg. An Introduction to Mathematical Machine Theory.
Addison-Wesley, Reading, Mass. and London, 1962.

[113] Abraham Ginzburg and Michael Yoeli. Products of automata and the
problem of covering. Transaction of the American Mathematical Society,
116(4):253-66, April 1965.

[114] Joseph A. Goguen. OBJ as a theorem prover. Technical report SRI-CSL-
88-4. Computer Science Laboratory, SRI International, April 1988.

[1153 Michael J. C. Gordon. Why higher-order logic is a good formalism for speci-
fying and verifying hardware. Formal Aspects of VLSI Design, pages 153-77,
G. J.Milne and P. A. Subrahmanyam, editors. Elsevier Scientific Publishers,
1986.



BIBLIOGRAPHY 271

[116] Michael J. C. Gordon. HOL: a proof generating system for higher-order logic.
VLSI Specification, Verification and Synthesis (Calgary, Canada), pages 73-
128, Graham Birtwistle and P. A. Subrahamanyam, editors. Kluwer Academic
Publishers, Boston, 1987.

[117] Mike Gordon. Proving a Computer Correct. Technical report 42. University
of Cambridge Computer Laboratory, 1983. Year of publication uncertain.

[118] Mike Gordon. HOL: a Machine Oriented Formulation of Higher Order Logic.
Technical report 68. University of Cambridge Computer Laboratory, May
1985.

[119] Brian Graham and Graham Birtwistle. Formalizing the design of an SECD
chip. Proceedings of of the Mathematical Sciences Institute Workshop on Hard-
ware Specification, Verification, and Synthesis: Mathematical Aspects. Cornell
University, July 1989.

[120] Brian T. Graham. The SECD Microprocessor: a Verification Case Study.
Kluwer Academic Publishers, Norwell, MA, 1992.

[121] Torbj6rn Granlund and Richard Kenner. Eliminating branches using a super-
optimizer and the GNU C compiler. Proceedings of ACM SIGPLAN '92 Con-
ference on Programming Language Design and Implementation, page 341:352,
June 1992.

[122] Evan 0. Grossman. Intel will replace buggy .86s for free. PC Week, 4
December 1989. Abstracted in [80].

[123] A. Gupta. Formal hardware verification methods: a survey. Formal Meihod'b
in System Design, 1(2/3):151-238, October 1992. Revised version of [124].

[124] Aarti Gupta. Formal Hardware Verification Methods: A Survey. Technical
report CMU-CS-91-193. Department of Computer Science, Carnegie-Mellon
University, Pittsburgh, PA, October 1991. Also published as [123].

[125] John Guttag, Jim Horning, and Jeannette Wing. Some notes on putting
formal specifications to productive use. Science of Computer Programming,
2:53-68, 1982.

[126] Gary D. Hachtel and Reily M. Jacoby. Verification algorithms for VLSI
synthesis. IFEECAD., 7(5):616-40, May 1988.

[127] Anthony Hall. Seven myths of formal methods. IEEE Software, pages 11-19,
September 1990.



272 BIBLIOGRAPHY

[128] Larry Lewis Hanes. Logic Design Verification Using Static Analysis. PhD
thesis, published as Coordinated Science Laboratory computer systems group
report CSG-15. University of Illinois, Urbana, May 1983.

[129] F. K. Hanna and N. Daeche. Specification and verification using higher-order
logic: a case study. Formal Aspects of VLSI Design, pages 179-213, G. J.Milne
and P. A. Subrahmanyam, editors. Elsevier Science Publishers, 1986.

[1301 F. K. Hanna, N. Daeche, and M. Longley. Veritas+: a specification language
based on type theory. Hardware Specification, Verification, and Synthesis:
Mathematical Sciences Institute Workshop Proceedings (Ithaca, NY, 5-7 July
1989), pages 358-79. Springer Verlag, Berlin, 1990.

[131] John P. Hayes. A unified switching theory with applications to VLSI design.
Proceedings of of the IEEE, 70(10):1140-51, October 1982.

[132] Frederick J. Hill and Gerald R. Peterson. Introduction to Switching Theory
and Logical Design, 3rd edition. John Wiley, New York, 1981.

[133] C. A. R. Hoare. Proof of correctness of data representations. Acta Informat-
ica, 1:271-81, 1972.

[134] John E. Hopcroft and Jeffrey D. Ullman. Introduction to Automata The-
ory, Languages, and Computation, Addison-Wesley series in computer science.
Addison-Wesley, Reading, Mass. and London, 1979.

[135] Alan J. Hu, David L. Dill, Andreas J. Drexler, and C. Han Yang. Higher-
level specification and verification with BDDs. Computer-Aided Verification:
Fourth International Workshop (Montreal, 29 June-1 July 1992), pages 82-95.
Springer Verlag, Berlin, 1992.

[136] Warren A. Hunt, Jr. Microprocessor design verification. Journal of Auto-
mated Reasoning, 5:429-60, 1989.

[137] Warren A. Hunt, Jr. FM8501: a Verified Microprocessor. PhD thesis. Uni-
versity of Texas, Austin, December 1985.

[138] Diana Hwang. Token-ring skirmish: reliability of Falcon 16M-bit chip de-
bated. Computer Reseller News, 24 September 1990. Abstracted in [80].

[139] Seung Ho Hwang and A. Richard Newton. An efficient verifier for finite
state machines. IEEE Transactions on Computer-Aided Design, 10(3):326-
34, March 1991.

[140] 486 bugs derail PC vendors' plans; systems with corrected version of Intel
chip unlikely before 1990. Info World, 30 October 1989. Abstracted in [80].



BIBLIOGRAPHY 273

[141] Prabhat Jain and Ganesh Gopalakrishnan. Some techniques for efficient
symbolic simulation-based verification. International Conference on Computer
Design, 1992.

[142] Prabhat Jain, Prabhakar Kudva, and Ganesh Gopalakrishnan. Towards a
verification technique for large synchronous circuits. Computer-Aided Verifi-
cation, 1992.

[143] Stuart J. Johnston. 486-based languages join wait for bug-delayed chip.
InfoWorld, 27 November 1989. Abstracted in [80].

[144] Jeff Joyce, Graham Birtwistle, and Mike Gordon. Proving a computer correct
in higher order logic. Technical report 100. University of Cambridge Computer
Laboratory, December 1986.

[145] Jeffrey J. Joyce. Formal verification and implementation of a microprocessor.
VLSI Specification, Verification and Synthesis (Calgary, Canada), pages 129-
57, Graham Birtwistle and P. A. Subrahamanyam, editors. Kluwer Academic

Sblishers, 
Boston, 1987.

[146] Jeffrey J. Joyce. Using higher-order logic to specify computer hardware
and architecture. Design Methodologies for VLSI and Computer Architecture:
Proceedings of IFIP TC1O Working Conference (Pisa, Italy, 19-21 September
1988), pages 129-45, D. A. Edwards, editor. North-Holland, Amsterdam,
1988.

[1471 Jeffrey J. Joyce. More reasons why higher-order logic is a good formalism
for specifying and verifying hardware. Proceedings of of the ACM/SIGDA
International Workshop in Formal Methods in VLSI Design, January 1991.

[148] Jeffrey J. Joyce. More reasons why higher-order logic is a good formalism
for specifying and verifying hardware. Technical report 90-35. Department of
Computer Science, University of British Columbia, November 1990.

[149] Jeffrey J. Joyce and Carl-Johan H. Seger. Linging BDD-based symbolic eval-
uation to interactive theorem-proving. 30th Design Automation Conference
(Dallas, TX, 14-18 June 1993), pages 169-74, June 1993.

[150] Jeffrey John Joyce. Multi Level Verification of Microprocessor-Based Sys-
tems. PhD thesis, published as Technical report 195. University of Cambridge,
Computer Laboratory, May 1990.

[151] Timothy Kam and P. A. Subrahmanyam. Comparing layouts with HDL mod-
els: a formal verification technique. International Conference on Computer
Design, pages 588--91, 1992.



274 BIBLIOGRAPHY

[1521 Pagan Kennedy. R&D push allows Intel to ride high in laptop market:
investment in research yields new technology. PC Week, 11 November 1921.
Abstracted in [801.

[153] Steven Kovsky. Intel says it has pinpointed, fixed defect in 80486 chip.
Digital Review, 6 November 1989. Abstracted in [80].

[1.54] R. P. Kurshan. Analysis of discrete event coordination. REX Workshop
(Mook, Netherlands, Ma' 29-June 2. 1989), pages 414-53, J.W. de Bakker.
W.-P. de Roever, and G. Rozenberg, editors. Springer Verlag, Berlin. 1990.

[155] R. P. Kurshan and K. L. McMillan. Analysis of digital circuits through sym-
bolic reduction. IEEE Transactions on Computer-Aided Design. 10(1 1): 1356-
71, November 1991.

[156] A. K. Kutti. On a graphical representation of the operating regime of cir-
cuits. In Edward F. Moore, editor, Sequential Machines: Selected Papers.
pages 228-35. Addison-Wesley, Reading, Mass. and London, 1964. Trans.
by E. F. Moore of "0 graficheskom izobrazhenii rabochego rezhima skhem."
Trudy Leningradskoi Eksperimental 'not Elektrotekhnicheskoz Laboratorii, Vol.
8 (1928), pp. 11-18.

[157] Leslie Lamport. An axiomatic semantics of concurrent programming lan-
guages. Proceedings of the NATO Advanced Study Institute on Logics and
Models of Concurrent Systems (Colle-sur-Loup, France, 8-19 October 1984).
Published as Krzysztof R. Apt, editor, NATO ASI series, Series F, Computer
and System Sciences, 13:77-144. Springer Verlag, Berlin, 1985.

[158] M. Langcvin and E. Cerny. Verification of processor-like circuits. Correct
Hardware Design Methodologies: Proceedings of Advanced Research Workshop
(Turin, Italy, 12-14 June 1991), pages 141-62. North-Holland, Amsterdam,
1992.

[159] Timothy E. Leonard. Specification of computer architectures: a survey and
annontated bibliography. Technical report 188. University of Cambridge Com-
puter Laboratory, January 1990.

[160] Beth Levy. Microcode verification using SDVS-the method and a case
study. 17th Anuual Microprogramming Workshop (New Orleans, LA,
30 October-2 November 1984). Published as ACM Sigmicro Newsletter,
15(4):234-45. IEEE Computer Society Press, December 1984.

[161] Paul Loewenstein. Reasoning about state machines in higher-order logic.
Workshop on Hardware Specification, Verification, and Synthesis: Mathemat-
ical Aspects, LNCS., M. Leeser and G. Brown, editors. Springer Verlag, Berlin,
1989.



BIBLIOGRAPHY 275

[162] Paul Loewenstein and David L. Dill. Verification of multiprocessor cache
protocol using refinement relations and higher-order logic. Computer-Aided
Verification (Rutgers, NJ), June 1990.

[163] David Long. Mode; Checking. Abstraction, and Compositional Verification.
PhD thesis. Department of Computer Science, Carnegie-Mellon University.
Pittsburgh, PA, 1993.

[164] Benny Lorenzo. Compaq: no escaping Wall Street's wrath. Computer Re-
seller News, 13 November 1989. Abstracted in [801.

[165j Nancy A. Lynch and Mark R. Tuttle. An introduction to input-output
automata. Technical report MIT/LCS/TM-373. Laboratory for Computer
Science. Massachusetts Institute of Technology. Cambridge, MA, November
1988.

[1661 Jean-Christophe Madre and Jean-Paul Billon. Proving circuit correctness us-
ing formal comparison between expected and extracted behavior. 25th Design
Automation Conference, pages 205-10, 1988.

[167] Zohar Manna. Mathematical Theory of Computation, Computer Science Se-
ries. McGraw-Hill, New York, 1974.

[168] Leo Marcus, Stephen D. Crocker, and Jaisook R. Landauer. SDVS: a system
for verifying microcode correctness. 17th Annual Microprogramming Work-
shop (New Orleans, LA, 30 October-2 November 1984). Published as ACM
Sigmicro Newsletter, 15(4):246-55, December 1984.

[169] John Markoff. I.B.M. to base a computer on powerful i486 Intel chip. The
New York Times, 20 December 1989. Abstracted in [80].

[170] John Markoff. Top-of-line Intel chip is flawed; the design error will be fixed.
The New York Times, 27 October 1989. Abstracted in [80].

[171] Vance McCarthy. Intel halts prodoction of 50MHz 486 chips; PC makers
advised to delay shipments. PC Week, 26 August 1991. Abstracted in [80].

[172] Michael C. McFarland. Formal verification of sequential hardware: a tutorial.
IEEE Transactions on Computer-Aided Design, 12(5):633-54, May 1993.

[173] Kenneth L. McMillan. Symbolic Model Checking: An approach to the state
,xplosion problem. PhD thesis, published as Technical report CMU-CS-92-
131. School of Computer Science, Carnegie-Mellon University, Pittsburgh,
PA, May 1992.



276 BIBLIOGRAPHY

[174] Carver A. Mead and Lynn A. Conway. Introduction to VLSI Systems.
Addison-Wesley, Reading, Mass. and London, 1980.

[175] Thomas F. Melham. Abstraction mechanisms for hardware verification. VLSI
Specification, Verification and Synthesis (Calgary, Canada), pages 267-91,
Graham Birtwistle and P. A. Subrahamanvam, editors. Kluwer Academic
Publishers, Boston. 1988.

[176] Thomas Frederick Melham. Formalizing Abstraction Mechanisms for Hard-
ware Verification in Higher Order Logic. PhD thesis, published as Technical
report 201. University of Cambridge, Computer Laboratory. August 1990.

[177] T. K. Miller, III. Personal communication, 18 June 1993. Telephone conver-
sation regarding Hector.

[178] T. K. Miller, III. Personal communication, July 1989. Telephone conversa-
tion.

[179] T. K. Miller III, Bharat L. Bhuva, Russell L. Barnes, Jyy-Chiang Duh. Hsing-
Bang Lin, and David E. Van den Bout. The HECTOR microprocessor. In-
ternational Conference on Computer Design, pages 406-11, 1986.

[180j George J. Milne. The formal description and verification of hardware timing.
IEEE Transactions on Computers, 40(7):811-26, July 1991.

[181] Robin Milner. A Calculus of Communicating Systems, volume 92 of Lecture
Notes in Computer Science. Springer Verlag, Berlin, 1980.

[182] Robin Milner. Communication and Concurrency, Prentice Hall international
series in computer science. Prentice-Hall, Englewood Cliffs, NJ, 1989.

[183] Robin Milner. Elements of interaction. Communications of the ACM,

36(1):78-89, January 1993.

[184] MIPS Co. R4000 bug list. Microprocessor Report, page 16, 30 October 1991.

[185] Edward F. Moore. Gedanken-experiments on sequential machines. In Shan-
non and McCarthy, editors, Automata Studies, volume 34 of Annals of Math-
ematical Studies, pages 129-53. Princeton University Press, 1956.

[186] Edward F. Moore. Bibliographic comments on sequential machines. In Se-
quential Machines: Selected Papers, pages 236-44. Addison-Wesley, Reading,
Mass. and London, 1964.

[187] J. Strother Moore. A mechanically verified language implementation. Journal
of Automated Reasoning, 5:461-92, 1989.



BIBLIOGRAPHY 277

[188] J. Strother Moore. System verification. Journal of Automated Reasoning,
5:409-10, 1989.

[1891 Motorola, Incorporated. M68000 Family Programmer's Reference Manual,
1989.

[190] Jannis Moutafis. Inmos to deliver Transputer: T9000 silicon had been de-
layed due to design flaw. Electronic Engineering Times. 13 July 1992. Ab-
stracted in [80].

[191] Amar Mukherjee. Introduction to nMOS and CMOS VLSI Systems Design.
Prentice-Hall, Englewood Cliffs, NJ, 1986.

[192] A. Richard Newton and Bryan T. Preas (Editors). 25 Years of Electronic
Design Automation: A compendium of papers from the Design Automation
Conference. Association for Computing Machinery, 1988.

[193] Intel device has defect. New York Times, 30 Jan 1990. Abstracted in [80].

[194] John D. Oakley. Symbolic Excution of Formal Machine Descriptions. PhD
thesis. Carnegie-Mellon University, Pittsburgh, PA, April 1979.

[195] Andrew Ould. Motorola confirms chip delays; revisions begin on 68040 batch.
PC Week, 24 September 1990. Abstracted in [80].

[1963 David Park. Concurrency and automata on infinite sequences. Theoretical
Computer Science: 5th GI-Conference (Karlsruhe, 23-25 March 1981). Pub-
lished as Peter Denssen, editor, Lecture Notes in Computer Science, 104:167-
83. Springer Verlag, Berlin, 1981.

[197] David A. Patterson. STRUM: structured microprogram development system
for correct firmware. IEEE Transactions on Computers, C-25(10):974-85,
October 1976.

[198] David A. Patterson and John L. Hennessy. Computer Architecture: a Quan-
"titative Approach. Morgan Kaufmann Publishers, 1990.

[1993 Laurence C. Paulson. ML for the Working Programmer. Cambridge Univer-
sity Press, 1991.

[2003 Intel debugs 486 chip. PC User, 20 December 1989. Summarized in [80].

[2013 Vijay Pitchumani and Edward P. Stabler. An inductive assertion method for
regit,- transfer level design verification. IEEE Transactions on Computers,
C-32(12):1073-80, December 1983.



278 BIBLIOGRAPHY

[202] Carl Pixley. Personal communication, 31 March 1993. Remarks on industry
verification needs.

[2031 Clive H. Pygott. NODEN-HDL: an engineering approach to hardware veri-
fication. The Fusion of Hardware Design and Verification (Glasgow. 4-6 July
1988), pages 211-29. Elsevier Science Publishers, 1988.

[204] J. Rees and W. Clinger (editors). The revised3 report on the algorithmic
languagc Scheme. SIGPLAN Notices, 21(2), 1986.

[205) D. S. Reeves and M. J. Irwin. Fast methods for switch-level verification of
MOS circuits. IEEECAD., CAD-6(5):766-79, September 1987.

[206] Robert Ristelhueber. Intel snag on 486 hits IBM, Compaq. Electronic News.
30 October 1989. Abstracted in [80).

[207] J. Paul Roth. VLSI verification and correction. In Tosiyasu L.Kunii, edi-
tor, VLSI Engineering: Beyond Software Engineering, pages 174-6. Springer
Verlag, Berlin, 1984.

[208] J. Paul Roth. Hardware verification. IEEE Transactions on Computers,
C-26(12):1292-4, December 1977.

[209] Walter S. Scott, Robert N. Mayo, Gordon Hamachi, and John K. Ouster-
hout (editors). 1986 VLSI tools: still more works by the original artists.
Technical report UTCB/CSD 86/272. Computer Science Division, University
of California, Berkeley, December 1985.

[210] Carl-Johan Seger. A bounded delay race model. International Conference
on Computer-Aided Design, pages 130-3, 1989.

[211] Carl-Johan Seger and Randal E. Bryant. Modeling of circuit delays in sym-
bolic simulation. Applied Formal Methods for VLSI (Leuven, Belgium), pages
625-39, 1989.

[212] Carl-Johan H. Seger and Randal E. Bryant. DRAFT: Formal verification
by symbolic evaluation of partially-ordered trajectories. Formal Methods in
System Design, 1993. Submitted for publication; manuscript obtained from
authors.

[213] R. C. Sekar and M. K. Srivas. Formal verification of a microprocessor using
equational techniques. Current Trends in Hardware Verification and Auto-
mated Theorem Proving (Banff, Canada, 12-18 June 1988), G. Birtwistle and
P. A. Subrahmanyam, editors. Springer Verlag, Berlin, 1989.



BIBLIOGRAPHY 279

[214] Andrew M. Seybold. Morality and the computer industry. Andrew Seybold's
Outlook on Professional Computing, November 1989. Abstracted in [80].

[215] Mary Lee Shalvoy and Kristen Hedlund. Intel: 486 is flawed, concession's
timing causes market anxiety. Computer Reseller News, 30 October 1989.
Abstracted in [80].

[216] Eben Shapiro. Shipment of new chip has begun at Motorola. The New York
Times, 27 November 1990. Abstracted in [80].

[217] Lou Sheffer. Personal communication, 17 May 1993. Question session fol-
lowing presentation.

[218] Intel resumes 486 shipments. Electronic News, 4 December 1989. Abstracted
in [80].

[219] Stephen Slade. The T Programming Language: a Dialect of Lisp. Prentice-
Hall, Englewood Cliffs, NJ, 1987.

[220] Michael Slater. Swatting 386 bugs. ESD: The Electronic System Design
Magazine, September 1989. Abstracted in [80].

[221] Rebecca Smith. Intel to delay rollout of next-generation microprocessor:
introduction of P5 chip put off until '93. San Jose Mercury News, 23 July
1992. Abstracted in [80].

[222] Stewart G. Smith and Peter B. Denyer. Serial-Data Computation. Kluwer
Academic Publishers, Boston, 1988.

[223] Tracey Snell. BUG bites EISA PCs: suppliers of EISA machines are suffering
from bug in 80486 chip. PC User, 28 February 1990. Abstracted in [80].

[224] Lisa L. Spiegelman. Intel halts shipments of 50MHz 486 processor. Computer
Reseller News, 26 August 1991. Abstracted in [80].

[2251 Lisa L. Spiegelman. PC makers ignore 486 bugs, ready 33-MHz 486s. PC
Week, 5 February 1990. Summarized in [80].

[226] Nagendra C. E. Srinivas and Vishwanie D. Agrawal. Formal verification of
digital circuits using hybrid simulation. IEEE Circuits and Devices, 4(1):19-
27, 1988.

[227] Mandayam Srivas and Mark Bickford. Formal verification of a pipelined
microprocessor. IEEE Software, 7(5):52-64, September 1990.



280 BIBLIOGRAPHY

[228] V. Stavridou, H. Barringer, and D. A. Edwards. Formal specification and
verification of hardware: a comparative case study. 25th Design Automation
Conference, pages 197-204, 1988.

[229] Victoria Stavridou, Howard Barringer, and Doug Edwards. Formal specifica-
tion and verification of hardware: a comparative case study. Technical report
UMCS-87-11-1. Department of Computer Science, University of Manchester.
1987.

[230] Elizabeth A. Stein. 040 production up to speed. Computer Design, 14 Jan-
uary 1991. Abstracted in [80].

[231] Ben G. Streetman. Solid State Electronic Devices, Prentice-Hall series in
solid state physical electronics, 2nd edition. Prentice-Hall. Englewood Cliffs.
NJ, 1980.

[232], Kenneth J. Supowit and Steven J. Friedman. A new method for verifying
sequential circuits. 23rd Design Automation Conference. pages 200-5, 1986.

[233] Christer Svensson and Robert Tj.rnstr6m. Switch-level simulation and
the pass transistor exor gate. IEEE Transactions Computer-Aided Desi gn,
7(9):994-7, September 1988.

[234] H. Touati, H. Savoj, B. Lin, R. Brayton, and A. Sangiovanni-Vincentelli. Im-
plicit state enumeration of finite state machines using BDD's. Proceedings of
International Conference on Computer-Aided Design, pages 130-3, November
1990.

1235] D. A. Turner. A new implementation technique for applicative languages.
Software-Practice and Experience, 9:31-49, 1979.

[236] Filip Van Aelten. Automatic Procedures for the Behavioral Verification of
Digital Designs. PhD thesis. Massachusetts Institute of Technology, Cam-
bridge, MA, May 1992.

[237] Filip Van Aelten, Jonathan Allen, and Srinivas Devadas. Verification of
relations between synchronous machines. IEEE Transactions Computer-Aided
Design, 1993. Accepted for publication.

[238] T. J. Wagner. Hardware verification. PhD thesis. Stanford University, 1977.

[239] Jr Warren A. Hunt and Bishop C. Brock. A formal HDL and its use in the
FM9001 verification. Technical report 79. Computational Logic, Incorporated,
Austin, Texas, July 1992.



BIBLIOGRAPHY 281

[240] Daniel Weise. Constraints, abstraction, and verification. Hardware specifi-
cation, verification, and synthesis: mathematical aspects, number 408 in Lec-
ture Notes in Computer Science, Miriam Leeser and Geoffrey Brown, editors.
Springer Verlag, Berlin, 1989.

[241] Daniel Weise. Multilevel verification of MOS circuits. IEEE Transactions on
Computer-Aided Design, 9(4):341-51, April 1990.

[2421 E. P. Wentworth. Pitfalls of conservative garbage collection. Software-
Practice and Experience, 20(7):719-27, July 1990.

[243] Neil H. E. Weste and Kamran Eshraghian. Principles of CMOS VLSI Design:
A Systems Perspective, VLSI Systems series. Addison-Wesley, Reading, Mass.
and London, 1985.

[244] Phillip J. Windley. The Formal Verification of Generic Interpreters. PhD
thesis. University of California, Davis, Division of Computer Science, June
1990. Citation obtained from author.

[245] Phillip J. Windley. A hierarchical methodology for the verification of mi-
croprogrammed microprocessors. IEEE Computer Society Symposium on Re-
search in Security and Privacy (Oakland, CA, 7-9 May 1990), pages 345-57,
May 1990.

[246] Jeanette M. Wing. A specifier's introduction to formal methods. IEEE
Computer, 23(9):8-24, September 1990.

[247] David Winkel and Franlkin Prosser. The Art of Digital Design. Prentice-Hall,
Englewood Cliffs, NJ, 1980.

[248j Loring Wirbel. Intel swats bug; users of 486 get Halloween scare. Electronic
Engineering Times, 30 October 1989. Abstracted in [801.

[249] Intel Corp. ties flaw in a new 486 chip to inadequate tests. Wall Street
Journal, 28 August 1991. Abstracted in [80).

[250] Another 'bug' in Intel chip may delay few shipments. Wall Street Journal,
pages B, 10:4, 30 January 1990. Abstracted in [80].

[251j Stephen Kreider Yoder. Intel delays debut of P-5 chip to refine production
process and eliminate bugs. Wall Street Journal, 23 July 1992. Abstracted in
[801.

[252] Stephen Kreider Yoder. Chip by Intel contains flaw in calculating; 'bugs'
could stall makers of certain computers; most users unaffected. Wall Street
Journal, 27 October 1989. Abstracted in [80].



282 BIBLIOGRAPHY

[253] Stephen Kreider Yoder. Chip delay at Motorola sparks ire. Wall Street
Journal, 7 September 1990. Abstracted in [80].

[254] Yuan Yu. Automated Proofs of Object Code for a Widely Used Microproces-
sor. PhD thesis. University of Texas at Austin, December 1992.

[255] William Zachmann. Watch out for those first Intel 486-based machines. PC
Week, 6(11), 6 November 1989. Abstracted in [80].

[256] Pamela Zave. Seminar. 2 March 1992. Programming Systems seminar at
CMU.

[257] C. Zhou and C. A. R. Hoare. A model for synchronous switching circuits
and its theory of correctness. Formal Methods in System Design, 1(1):7-28.
July 1992. Citation from Inspec.

[258] Han Zuidweg. Verification by abstraction and bisirnulation. Automatic 1'er-
ification Methods for Finite State Systems (Grenoble, June 1989). Published
as Joseph Sifakis, editor, Lecture Notes in Computer Science, 407:105-16.
Springer Verlag, Berlin, 1990.



Appendix A

A theory of marked strings

Here we define a notion of marked strings suitable for reasoning about overlapping
state sequences, such as in a pipelined system. The development is rather formal.
It makes use of no more than elementary lattice theory, such as that found in
Chapter 3 of Brzozowski and Yoeli's text [601. We begin with a short review of
the reason for developing the formalism.

A.1 Motivation

phil phil

op op. _I-2 :;

a. Timing diagram b. Two overlapped copies

Figure A.1: Overlap of timing diagram

The basic reason to define marked strings is to provide a formal model analogous
to the controlled, aligned overlapping of two timing diagrams. Consider as an
example the idealized timing diagram shown in Figure A.la. Three signals are
constrained during the first two intervals of time, but during tl" , final, third interval
of time, only the first two signals are constrained. Suppose that this timing diagram
represents an operation that some circuit performs. Two light gray vertical lines
indicate the beginning and ending of this operation. Notice that although we want
to say that the operation begins at the first gray line, some the signals have already

283



284 APPENDIX A. A THEORY OF MARKED STRINGS

been determined during the interval leading up to this instant. We wish to be able
to determine the representation for the operation performed twice in succession.

Figure A. lb represents the repetition of the operation-the first diagram twice
in succession. The vertical lines show the times when the first operation begins.,
when the first ends and the second begins, and when the second ends. We will
formalize the construction of this diagram from copies of the previouo one. Of
course. if we were to combine still more copies. we should get a larger diagram,
but the final result should not depend on the order in which we put together the
smaller pieces.

Suppose that the letter a represents the combination of values' (0, 1. 1), that
the letter b represents (1,, 00), and the letter c represents (0, 1,0). Furthermore.
suppose that the prime symbol. ', represents the gray marker line. Then the first
diagram can be represented by the set of strings { a'bc'. a'ba'} and the se, ond
can be represented by { a'ba'bc'. a'ba'ba' }. The following sections develop a theory
that allows us to do this, and to find the representation of the second from two
copies of the representation of the first, using an operation we call "overlapped
concatenation.'

A.2 Basic definitions

Let A be an alphabet. Define A' to be the set of marked strings over A, where a
marked string is a string over A' = A U { i } and the symbol / (to be read "mark")
does not appear in alphabet A. The symbol c "enotes the empty string. Note that
SE A'*.

We will need an error indicator, which we denote by T. The functions we define
will be strict with respect to T. Thus we will consider functions over the universe
A" U { T }. Without further mention we will abuse notation and write A` when
strictly speaking we mean A' U { T }. We express the usual concatenation by
adjacency, but we let it be strict on T. That is, xT = T = Tx whenever x E A'.

Definition 2 (p. 55) (Marked strings) The set A` of marked strings over al-
phabet A is defined inductively by the equations:

T E A'

Ix E A'* for x E A'*

axe A'` for a G A and x E A'"

For example, c (the empty string) and a and abc and a'bc' and a"'b and .". are all
marked strings, and T (the error indicator) is also a marked string.

]on the nodes phil, phi2, and op respectively



A.3. ORDERING AND LATTICE PROPERTIES 285

The formal definition provides a schema of structural indiction to use in sub-
sequent proofs. Most of our proofs involving marked strings use this schema, by
either ordinary or complete induction.

In the following definitions, statements, and proofs, letters from the beginning
of the (English) alphabet (i.e., a. b) denote distinct symbols from A, and letters
from the end of the alphabet (i.e., x. y. z) denote arbitrary marked strings already
known to be in A'.

We will need prefix and suffix-related properties of marked strings. There is a
strong symmetry between the.se sets of properties. We use this by giving full details
of prefix properties and letting suffix properties follow by symmetry according to
the following definition. The discussions accompanying the formal mathematics in

this section generallv omit mention of the symmetric case.

Definition 3 (p. 56) (Reversal) If.• is a marked string, its reversal iR is given
inductively by the equations:

R
C=(

TR=~T

(,X)R (= R

(aX)R xRa

For example, (a'bc')R = 'cb'a.

A.3 Ordering and lattice properties

Definition 4 (p. 56) (Marked prefix and suffix orders) The relation Fp is
given by induction.

6Ep

xEP T

ax Cp ay whenever x Cp y

Ix Cp ty whenever x EP y

x CP ly whenever x EP y

The relation x E, y is defined to hold exactly when xR C P yR does.

For example, the relations c ep a and a 1:p ab and ab Cp a'b all hold.
The relation _p, is similar to the familiar prefix ordering of strings. The inno-

vation here is the addition of the marker. Intuitively, inserting markers anywhere
in a string produces a larger one. This relation does also have the expected prefix
property.



286 APPENDIX A. A THEORY OF MARKED STRINGS

Proposition 21 If x is a prefix of y, that is, y = xz for some z, thr:& x -p y. If
x is a suffix of y, that is, y = zx for some z, then x L• y.

Most proofs in this appendix are by complete structural induction, where we
show a property for i from the inductive hypothesis that it holds for any x having
fewer symbols. These inductions are generally given in tables. where each case
occupies a line. The column -pf. by- justifies the case: "insp.'" indicates that it
can be seen by inspection without the inductive hypothesis: "'ind." indicates that
the inductive hypothesis was used. In each we show only one result; the other
follows by symmetry.

Proof: The prefix result can be seen by structural induction, according to the lines
of the following table. The third line follows because concatenation is strict with
respect to T.

x] i iy pf. bv
CI Cpy insp.

T T I, Ty strict
ix Ix EP Ixy ind.
ax ax E. axy ind.

Lemma 22 The relations r-P and Q, are reflexive, antisymmetric, and transitive.

Proof: By structural induction. Reflexivity and anti-symmetry can be seen ac-
cording to the lines of the following tables, respectively.

'•C i pf. by _ _ , pf. by
Ec C def. C y true ify = e insp.

T -_ T def. x T true ifx = T insp.
Ix , P ix ind. ax ay ifx p y ifx p y Ind.
ax CPax ind. Ix ly ifx Up y ifx C y ind.

x ly ifxrPy ifx=ly insp.



A.3. ORDERING AND LATTICE PROPERTIES 287

Transitivity can be seen from the following table.

i assumptions pf. by
y y C = f insp.

e y y T insp.
f y ay az n/a
f y fy /z n/a
E y y /Z insp.
"x T e z n/a

x T y T y = T insp.
"x T ay az n/a
"x T /y 1z n/a
x T y Iz y=TEpz:n/a

ax ay c z n/a
ax ay y T n/a
ax ay ay az x y.y Cp z ind.,def. D,
ax ay fy Iz n/a
ax ay y 1z n/a
Ix ly f z n/a

fx /y y T n/a
Ix fy ay az a =I next
/x /y ly /z x Ep y,y 9p z ind.,def.
lX ly y /z n/a
"x y z n/a
"x ly y T n/a

"x ly ay az a =I next
"x ty ty fz x C, y,y Cp z ind.,def.
"x /y y /z n/a

Theorem 23 The structures (A'*, rp) and (A', :,) are posets.

Proof: Immediate from Lemma 9rnd the definition of a poset. U

Definition 5 (p. 57) (Marked prefix and suffix joins) The binary operator Up



288 APPENDIX A. A THEORY OF MARKED STRINGS

is given inductively.
xUpT=T

TUpx=TX UP Tr =T
TUpx = T

Ix UP Xy = X(x U, y)
Ix Up y = /(X Up y)

Ix Up y = -(x Up Y)

ax Up ay = a(x Up y)

ax Up by = T

The operator x U, y is defined as (xR u p yR)R.

Observe that we have covered the entire set A".
For example, a'b Up a'b = a'b while aa'b Up a'b T. On the other hand,

a'bbUp = a'b = a'bb. Finally, ' ,bb' Up a'b' = 'a'b'b'.
The operator Up is similar to the least upper bound on prefix ordering. Again,

the innovation is the marker. In the ordinary prefix ordering, the least upper
bound of two strings is the longer of the two, if the shorter is its prefix, and is T
otherwise. Adding markers to the ordering requires inserting of the markers from
both of the operand strings. In fact, the same correspondence between joins and
associated orders holds with the markers included.

We can also define the prefix meet of marked strings.

Lemma 24 The ordering i &p ý holds precisely when i Up ' is equal to Y. The
ordering i C, holds precisely when i Ut, is equal to ý.

Proof: By structural induction as in the following tabie, using the first applicable
line.

C y y true true
x C x iff = X iff x =
T y T iffy=T iffy=T
x T T true true

IX fy I(x Up y) iffxCpy iffXL1Py=y
ix y I(x Up y) false false
X /y i(xUpy) iff X py iffxUpy=y

ax ay a(xUpy) iff xpy iffxUpy=y
ax by T false false

We can define meet and prove an analogous meet-order result.



A.3. ORDERING AND LATTICE PROPERTIES 289

Definition 31 (Marked prefix and suffix meets) The binary operator rip is
given inductively.

f rip y = C

X rip f =f

TFrip y = y
X nip T = x

ix fly /y = I(x fl, y)

Ix F1p y = X fl, y

X rip ly = x rip y
ax rip ay = a(x rip y)

ax rip, by = c

The operator x n, y is defined as (xR rip y R)R.

Lemma '25 The ordering i C-p holds precisely when i rip, is equal to i. The
ordering i E, ý holds precisely when i fl., ý is equal to i.

Proof: By structural induction as in the following table, using the first applicable
line.

9 9piCP jn

6 y f true true
x f f if X= e if X= C
T y y if y =T ify =T
x T X true true

Ix i'y I(xFIp y) if x cpy if x =xF1 y
ix y x ri, y false false
X /y x np y if x Epy if x= x flpy

ax ay a(x np y) if x cpy if x= x n y
ax by f false false

Lemma 26 The structures (A'*, Cp) and (A'*, E:,) are lattice ordered sets.

Proof: From theorem 23 (posets) and lemmas 24 and 25 (relating lub/gib to
meet/join).

Theorem 1 (p. 57) The structures (A'*, Up, rip) and (A'*, u,, f-1.) are lattices.



290 APPENDIX A. A THEORY OF MARKED STRINGS

-a a " a" aa aa' *aaa a' a"a a'a' 'aa aa" aa'a aaa' aaaa

"a 'a 'aa a" a'a aa aaa

"a a, aa

a

Figure A.2: Hasse diagram for the beginning of the marked prefix ordering for a
one-symbol alphabet

Proof: By lemmas 24, 25, and 26, and some elementary lattice theory. U

Corollary 27 Idempotent, commutative, associative, and absorptive laws hold in
the structure (A'*, U.P, np) and the structure (A'*, Up, I) .

The visually-oriented reader may gain some appreciation for the ordering from
the Hasse diagrams of Figures A.2 and A.3.

A.4 An overlapped concatenation operator

Definition 32 (Clean length of marked string) The clean length of a marked



A.4. AN OVERLAPPED CONCATENATION OPERATOR 291

aaa aa' a W a'a abata ab" ab ' ' 'a b 'a -b ta 'b b b baa ba b ba V bb bba W bbb

aa a b 'a 'b ba b bb

a b

Figure A.3: Hasse diagram for the beginning of the marked prefix ordering for a
two-symbol alphabet

string, which is its length discounting any marks, is defined inductively:

T = oo

laxI = I + lxj

For example, jai = 1 and Ia'I = 1 and la'bc'I = 3.
We can easily see that length behaves as expected with respect to concatena-

tion.

Proposition 28 If x and y are marked strings, [xyI = Ixl + lYl.

Proof:
_ 111 }ji j pf. by

fc 0 0 0 insp.
Sy 0 lyl yj insp.
x f IxI 0 jx insp.
TT 0o 0c oo insp.
T y 0o lyf oo insp.
x T IxI c0 oc insp.

Ix y 1xI lY] Ixyl ind.
ax y 1Ix lyl Ixyl ind.

ax y + jx( l y[ l+Ixy[ ind.
x by lx] I+ jy[ I+ Ixyl ind.



292 APPENDIX A. A THEORY OF MARKED STRINGS

U

Definition 33 (Clean and really marked) A marked string is really marked
if it is T, or if it contains at least one occurrence of the t marker. Otherwise it is
clean.

For example, abc is clean, and a'bc' is really marked.

Proposition 29 If x and y are clean and x Up y # T then x Up y is clean. If x
and y are clean and x U, y # T then x U, y is clean.

Proof: By structural induction according to the table.

i Up pf. by

y y hyp.
x f x hyp.
T y n/a
x T n/a

Ix Iy n/a
Ix y n/a
x ly n/a

ax ay a(x Up y) ind.
ax by T n/a

We can break marked strings into convenient pieces at the first or last marker.

Definition 6 (p. 57) (Clean prefix and suffix) If i is a marked string, its clean
prefix (or "first" part) F(&) is given inductively:

F(c) = e-

F(T) = T

F(ax) = a F(x)

F(fx) =

If ic is a marked string, its clean suffix (or "last" part) L(i:) is defined to be
(F(niR))R.

Definition 7 (p. 58) (Marked suffix and prefix) If i is a marked string, its
marked suffix (the "rest" left after removing the "first" part and the demarcating



A.4. AN OVERLAPPED CONCATENATION OPERATOR 293

marker) FR(i) is given inductively:

FR(c) =

FR(T) = T

FR(1x) = x
FR(ax) = FR(x)

If i is a marked string, its marked prefix (the "rest" left after removing the "last"
part and marker) LR(.i) is defined to be (FR(iR))R.

For example, the equations F(a'b'c) = a and L(a'b'c) = c and FR(a'b'c) = b'c
and LR(a'b'c) = a'b all hold.

Observe however that F and FR are not isotone over 2 _., and neither are L

and LR over E-. For example, a EP /a but F(a) = a Lp 6 = F('a).

Proposition 30 If x is clean, then FR(x) = c and LR(x) = e.

Proof: Induction, noting that the case Ix does not occur. U

F(x) if x marked and y 0 TProposition 31 F(xy) = xF(y) if x clean ory = T

L(y) if y marked and x 3 Tand t(xy)= L(x)y if y clean or x = T

For example, F(a'bc) = a and L(a'bc') = c and FR(a'bc) = be and LR(a'bc)
a'bc. For clean strings, F(abc) = abc and FR(abc) = (.
Proof: By induction on x according to the cases in the following table.

i y F(iy) pf. by
f y F(y) insp.

T T T insp.
fx Ixy C insp.
ax axy a F(xy) ind.

Corollary 32 If x is not T then F(x) is clean and L(x) is clean.

Proposition 33 If x is not T then F(xly) = F(x), and if y is not T then L(xly)
L(y).

2i.e., do not respect the order



294 APPENDIX A. A THEORY OF MARKED STRINGS

Proof: By applying proposition 31 and the definition of F. U

Proposition 34 FR(xy) FR(y) if x is clean
Pn FR(x)y if not

and LR(xy) LR(x) if y is clean
x LR(y) if not.

Proof: By induction on x according to the following table. The first two lines give
the clean case; the last three, the marked.

i iy FR(ziy) pf. by
6 y FR(y) insp.

ax axy FR(xy) = FR(y) insp.
T Ty FR(T) insp.
Ix Ixy zy = FR(lx)y ind.
ax axy FR(xy) = FR(x)y ind.

Proposition 35 If x is really marked, then the equations F(x) = F(LR(x)) and
L(X) = L(FR(x)) both hold.

Proof: By induction on x according to the cases in the following table. Recall that
by hypothesis x is really marked.

SF() F R FR (iR) LR(i:) pf. by
C f f insp.

T T T T T insp.

Ix e xR, FR (XR) LR(x) insp.

ax a FWx Ra FR (xR) a a LR(x) ind.

Proposition 36 If x is really marked, then F(x) C LR(x) and L(W) C-, FR(x).

Proof: By structural induction according to the table in the proof of proposition
35, except that the third line is justified inductively. U

Proposition 37 The functions FR and LR commute. That is, FR(LR(x)) =

LR(FR(x)).



A.4. AN OVERLAPPED CONCATENATION OPERATOR 295

For example, FR(LR(a'bc')) = FR(a'bc) = bc and LR(FR(a'bd)) = LR(bc') =
bc.
Proof: First we expand LR by its definition, then use structural induction. The
expansion is FR(FRR(xR)) = FRR(FRR(x)). The c and T cases are immediate.
The inductive cases go as follows.

FR (FR R ((,X)R)) = FR (FRR (XRI))

= FR ((FR (• R))R)

FR( = c if x clean

FR ((FR (xR) 1)R) if not

= FR (I FRR (XR))

=FR R (xR)

= FRR (FRR(ax))

FR (FRM R ((aX)h)) FR (FRc R (XR(a))

c if x clean

FR ((FR (XR )a)') if not

= FR (a FR R (X R))

= FR (FR R (XR))

=FR R (FR R(xT)) ind.

=FR R (FRR(ax))

Definition 34 (Middle) The function M(x) = FR(LR(x)) extracts the middle
part of a string.

For example, M(a'bc') =bc.

Proposition 38 If x = t/u/v and t and v are cit-an then M(x) = u.



296 APPENDIX A. A THEORY OF MARKED STRINGS

Proof: By proposition 34 and the definition of FR we can see that FR(x) =
FR(tiuiv) = FR(lu/v) = u/v. By the same proposition and the definition of LR we
see that LR(uiv) = LR(ut) = u. The result follows from the definition of M and
proposition 37. U

Proposition 39 F() Ep x and L(x) C-, x.

Proof: By structural induction according to the following table.

i F (i) pf. by
f insp.

T T insp.

Ix E insp.
ax a F(x) ind.

Proposition 40 FR(x) E . x and LR(x) E, x.

Proof: If x is clean the result is immediate since FR(x) = c by proposition 30.
If x is really marked, then FR(x) E l x and LR(x) E s x by structural induction
according to the following table. (The last two lines follow from proposition 21.)

SIR FR(•:) FRR(,i) pf. by

C e insp.
T T T T insp.
I X xR/ X X R prop.
ax xna FR(x) FRR(x) ind.,prop.

U

Definition 8 (p. 58) (Overlapped concatenation) The overlapped concatena-
tion of marked strings x and y,. written x//y, is defined to be the marked string
(LR(x) Us F(y))1(L(x) Up FR(y)).

When there is no conflict, overlapped concatenation yields a real marked string.
For example,

a'ba'//a'bc' = (LR(a'ba') Us F(a'bc'))' (L(a'ba') Up FR(a'bc'))

= (a'ba Us a)'(c Up bc')

= a'ba'bc

When there is conflict, it yields T, which can be thought of as an error indicator.
For example, expanding a'ba'//a'bc' from the definition yields (a'bc Us a) = T so
(since concatenation is strict) a'ba'//a'bc' = T.



A.5. PROPERTIES OF OVERLAPPED CONCATENATION 297

A.5 Properties of overlapped concatenation

We wish to show that // is an associative operator. Doing so requires the intro-
duction of some machinery.

Lemma 41 If y is clean then F(x) C, F(x U, y).

Proof: By structural induction (via a schema symmetric to the one we have been
using) according to the following table, making use of the definition of E,.

'; ý F (i) i U p} F(•iI Ur pf. by

x e F(x) x F(x) insp.
T y T T insp.

xa ya xa x clean (xu ) F(x Up y)a x clean ind., def.
I F(x) otw. {F(xUpy) otw. ind.

y x xclean (x up O xUp y xclean def.
' F(x) otw. F(x Up y) otw. ind.

xa yb ? T T insp.

Proposition 42 If x is really marked then F(x) Q, F(x//y) and L(y) 9;p L(z//y).

Proof: By definition, x//y is (LR(x) U, F(y))I(L(y) Up FR(y)) so by proposition
33, F(x//y) = F(LR(x) Us F(y)). By corollary 32, F(y) is clean. So by lemma
41, F(LR(x)) C, F(LR(z) U, F(y)). Since x is really marked, by proposition 35,
F(x) = F(LR(x)). The result follows by substitution. a

Proposition 43 If x has at least 2 marks then the equalities F(x)" M(x) = LR(x)
and M(x)aL(x) = FR(x) both hold.

Proof. By induction on x according to the table. In the last line, LR(7.) follows
from proposition 34, and the penultimate line also follows from proposition 34.

i F(i) FR(;i) M(:i) LR(i) F(3:)/M(i•) pf. by
6 n/a
I€ n/a
ae n/a
T T T T T T insp.

iT = T same
aT = T same

/y/ y/ y ly fy insp.
ayl a F(y/) FR(yi) M(y') a LR(yi) a F(y)i M(y') ind.
tyb f yb LR(y) LR(iy) / LR(y) prop.
ayb a F(yb) FR(yb) M(yb) aLR(yb) aF(yb)/M(yb) ind.



298 APPENDIX A. A THEORY OF MARKED STRINGS

S

Proposition 44 x(y Up z) = xy Up xz and (x U, y)z = xz U, yz.

Proof: By induction on x according to the following table.

i 1y iz iy Uip z i(y Up z) pf. by

C y z Up z y Up z insp.
T T T T T insp.
Ix Ixy fxz i(xy Up xz) ix(y Up z) ind.
ax axy axz a(xy Up xz) ax(y Up z) ind.

U

Proposition 45 If lwl = Ixj then (wUpx)(yUpz) = wyUpxz and (yUsz)(wU.,x) =
yw U. zx.

Definition 35 The operator 4,p (to be read "drop the first") is defined inductively:

x.jpO = x

,E k = c

Tpk = T

ix L,, k = xp k

ax pk = 4,pk- 1

The operator 1., (to be read "drop the last-) is defined by x 4, k = (xR 4, k)R.

Proposition 46 If x is clean then x 4.P k and x 4, k are also clean.

Definition 36 The operator tp, (to be read "keep at most the first") is defined
inductively:

e k =c

Ttpk = T

xtp0 = f
'x tp k= (x T,,k)

axk -k a (xfp k- 1)

The operator t, ("keep at most the last") is defined by x T, k =- (xR tp, k)R.

The operators 4 and 1 bind more tightly than U but less tightly than concate-
nation.



A.5. PROPERTIES OF OVERLAPPED CONCATENATION 299

Proposition 47 If x : T then IxIpkI <_ k and IxTki < k.

Proof: By structural induction, according to the following table,

i it' k [k •k[ pf. by
C C 0 insp.

F T 00 n/a
ax ' (x Tpk) Ixtpk! ind. hyp.

Proposition 48 If <j : jy and x is clean then x U y = T or x U y = y where J

Is either Up or U,.

Proof: By structural induction according to the table.

.;- zCUý pf. by
C y n/a
x F n/a
T y T insp.
x T T insp.

'x 'y n/a
'x y '(xUy) ind.
x I n/a

ax ay a(x U y) ind.
ax by T insp.

C C C insp.

Proposition 49 If x and z are clean then (x T, jyj U, y) Up z Tp = x T, j•, U,
(Y up z T, 1Y).

Proof: By applying proposition 48. U

Proposition 50 When z is clean, xy U, z = (x Us z 4•. jy1)(y U. z T', jyI). When z
is clean, yx U, z = (y Up z f, tyl)(x up z 4 lYD-



300 APPENDIX A. A THEORY OFAMARKED STRINGS

Proof: Byv structural induction on y and zaccording to the table.
Xi 3 , 1ýII ( Uý ý 1x , 10I~) Wu M) p, by

z I3 35z U, t f4

T T T T
Y, T Sy T T T ýs

Y/ Z
ya zo zy (3y U5 z)a' U:~5/ CUz~. ha :,~~ U,2t 5/f

Lemma 51

F(x//y) = F(x) U., F(y) 4sIMN-1r)I
MI(x//y) = (M(x) U, F(y) T, IM(xz){Y(M%(y) Up L(x) %p !M(y)ij)

L(x//y) = L(y) Uip L(x) 4-p IM(y)I
F(y//z) = F(y) U, F(Z) L. JM(Y)j

M(y//z) = (M(y) U, F(z) 1, IM(y)D' (M(z) UJp L(y) ip 1M(z)j)

F((x//y)//z) =F(x//y) U., F(z) 4. INM(x//y)l

M((x//y)//z) = (M(x//y) U.3 F(z) T. jTM(x//y)j)' (M(z) Up L(x//y) 1'p IM(z)!)

L((x//y)//z) = L(z) Up L(z//y) 4p JM(z)j

F(x//(y//z)) = F(x) U., F(y//z) 4, JM(x)I

M(x//(y//z)) = (M(x) U, F(y//z) T., IM(x)I)' (M(y//z) Up, L(x) Tp My/1

L(x//(y//z)) = L(y//z) Up L(x) 4p jM(y//z)j

Proof. The first three lines follow from definition 8, proposition 43. proposition 31.,
and proposition 50. The remainder follow by substitution and the previous lines.

Lemma 52 The marked strings M(x//y) and M(xr)' M(y) are equal.

Proof- From the second line of lemma 51.U

Lemma 53 F((x//Y)#z) = F(x//(y//z)) and L((x//y)//z) = L(x//(y//z)).

Proof: The reasoning for F is as follows; that for L is by symmetry.

F((x//y)//z) = F(x) U., F(y) 4', IM(x)l U., F(z) J, jM(x//y)j
F~xl~lz))= F(x) U., (F(y) U,, F(z) 4i JM(y)j) .,, JM(x)I

=F(x) U., F(y,) 4', IM(x)I U, F(z) J,( IM(x)I + JM(y)j)



A.5. PROPERTIES OF OVERLAPPED CONCATENATION 301

a

Proposition 54 If J > k then xtIjTpk = xTpk and xTjtk = xTk.

Proof: By induction on k and the structure of x. There are five cases; the last two
are inductive. Letting i = j - k, the cases are:

x t, 1 0 6 = x ,0

c I i + k k~I =~t k
T + i+ k = T ., k

xa T, j + k + 1 t, k + I (x j, + k)a T, k + 1 = (x Ij + k T, k) a

' ,j + k T. k (x . i + k)'f k = (x T.,j + k T, k)'

Proposition 55 If x is clean then x T. j+ k jp k = x 4p k tpj and x Tpj)+ k 4p =

x 4ýp ktp j.

Proof: By induction on x and k.

e TpJ + k ,p k = e = e $, k TpJ

T 1'p j + 0 4. 0 = x Tp j = x .•, 0 %p J
ax tp j + k + I $, k + I = a (z tp j + k) ýp k + I

= X Tp j + k 4p k
= X 4p k Tp J

= ax ýp k + 1 4p j

Proposition 56 If xLJp # T then (x Up y)t t k = x Tp k Up y Tp k. If xU8 3 T then
(xU, y)tk = xf.kU, yk.

Proof- By induction on k and the structure of x and y, according to the table:

1 0 i fUp 9 (1 Up ) tp &TV k 0tpk stp kup TV pf.by

SI l Iy k kCf P k y tp kinp
2 1 k = jp k xtp k tp k insp.
T I k n/a
x T1 k f/a
z y 0 z Up y . E C ifap,

y k x( U p 1 y (( U p y ) tpk ) k(~ A !i p ( X p U : : t . mild .

o 'y A ÷ ° (-U ) °((- osm) ,pU) -( p ) (y Up(- zt "ksVskTV d.

ax a y  k + I UpY) ( p Y) t ) o tpk) a(ytk) tpkUpIV & ) nld

ax by k



302 APPENDIX A. A THEORY OF MARKED STRINGS

Lemma 57 M((xly)#z) = M(x//(y//z)).

Proof- Wve begin by expanding by an equation of lemma 51, and first consider the
portion identified as A. We expand this by proposition 50, yielding two parts. The
second part, C, can be simplified by proposition 54. By proposition 49, the order
of the U operations in this expression is unimportant. The first part, B, can be
simplified by proposition 55. The last part of the original expansion, D, can be
expanded by proposition 56. The desideratum then follows from the symmetry of
C and the symmetry between B and D.

M((x//y)//z) = (M(x//y) U,, F(z) T,, IM(x//y)lD' (M(z) Up L(x//y)t IMT),

A= ((M(x) U5 F(y)t. IM(x)l)' (M(y) U, L(x)tI IM(y)I))

UF(z) t, IM(x)j + IM(y)I

=- M(x) U. F(y) T. IM(x) I U, ( F(z) 15(IM(x)I + IM(y)J) 1.. IM (y) )

'(M(y) U, L(x) T IM(y)I) U• F(z) I,(IM(x)I + IM(y)!)D L IM(y)!

C = M(y) Up L(x) T,, M(y)j U, F(z) '., IM(y)l

B= M(x) U, F(y)T, IM(x)l U, (F(z)4, IM(y)11.1M(x)I)

D = M(z) Up (L(y) Up L(x) $, IM(y)k) T, IM(zHj
= M(z) Upl L(y) "p JM(z)j Up (L(x) ý, IM(y)l T, IM(--)I)

Theorem 2 (p. 59) The operator // is associative.

Proof: By noting with the aid of lemmas 53 and 57 that:

x#(y//z) = F(x/(y//z))' M((x//(y//z))' L(x /(y/!z))

= F((x//y)//z)'M((x//y)//z)'L((X//y)//z)
= (x//y)//z

A.6 Additional properties and definitions

We need slightly more machinery in order to construct mappings that arc homo-
morphic over//.



A.6. ADDITIONAL PROPERTIES AND DEFINITIONS 303

Definition 9 (p. 59) The function CL is defined by the equation CL(x) = LR(x) L(x).

Lemma 4 (p. 60) If y has 2 or more marks, then x// CL(y) = CL(x//y).

Proof: Expanding by the definition, we desire to show that x/l LR(y) L(y) =
LR(x//y) L(x//y). Noting that if x has at least two marks, LR(x) has at least
one mark, we establish two useful identities. The first makes use of proposition
34 and definition 34. The second makes use of propositions 31 and 35. Then we
expand the left-hand side by the definition of // (definition 8). We simplify by our
identities then expand the portion after the mark using proposition 50.

FR(LR(y)L(y)) = FR(LR(y))L(y) = M(y)L(y)

F(LR(y)L(y)) = F(LR(y)) = F(y)
x//LR(y)L(y) = (LR(x) U., F(LR(y)L(y)))' (L(x) Up FR(LR(y)L(y)))

= (LR(x) U. F(y))' (L(x) up M(y)L(y))

- (LR(x) U. F(y))' (M(y) Up 1(x) "', IM(y)j) (L(x) 4. IjM(y)I ULp L(y))
A B

This yields two parts, identified as A and B above. Part B we recognize as L(xl/y).
We then expand l,R(x//y) by proposition 43, expand each part using lemma 51,
collapse by proposition 50, and finally collapse by proposition 43, whereupon we
recognize that part A is indeed LR(xj/y), completing the proof.

LR(x//y) = F(x//y)'M(x//y)

= (F(x) U. F(y) Is tM(x)l)' ((M(x) u. F(y) T, IM(x)I)' (M(y) Up L(x) tp IM(y)I))

= (F(x)' us F(y) S- IM(x)I) (M(x) us F(y) T. IM(x)I)' (M(y) Up L(x) Tp IM(y)j)

= (F(x)'M(x) U3 F(y))' (M(y) Up L(x) 'p IM(y)I)
= (LR(x) U, F(y))' (M(y) U, L(x) Tp JM(y)j)

=A

U

Lemma 58 If x is 1-marked then F(x) = LR(x) and L(x) = FR(x).

Proof. Since x is 1-marked, LR(x) is clean. Since x is marked, F(x) = F(LR(x))
by proposition 35. Since LR(x) is clean, F(LR(x)) = LR(x) by proposition 31.

Lemma 3 (p. 59) If x is 2-marked then x = CL(x)//x.



304 APPENDIX A. A THEORY OF MARKED STRINGS

Proof: First we observe an identity by expanding the definition of CL, applying
corollary 32 and proposition 31 and definition 34. We then observe a similar
identity by also applying lemma 58. Then we can expand CL(x)//x by the definition
of //, and simplify with the identities. Then we can simplify the first part by
propositions 43 and 44, and the last part by a lattice property. Applying the
definition of U, and lattice laws again yields the desired result.

L(CL(x)) = L(LR(x)L(x)) = L(LR(x))L(x) = FR(LR(x))L(x) = M(x)L(x)

LR(CL(x)) = LR(LR(x)L(x)) = LR(LR(x)) = F(x)

CL~x•.iY, - (LR(CL(z)) L, F(r))' (L(CL(x)), 1,, FR(x))

= (F(x) U,, F(x))' (M(x)L(x) Up FR(x))

- F(x)' (M(x)L(x) Lip M(x)'L(x))

- F(x)'M(x) (L(x) U' L(x))

- F(x)'M(x)'L(x) = x

Definition 10 (p. 60) (Compatibility) If strings x and y are 2-marked, we will
say that they are compatible, and denote this by x -- y, if and only if neither the
expression F(CL(x)) U. F(CL(y)) nor FR(CL(x)) Up FR(CL(y)) is equal to T.

Definition 11 (p. 60) If string x is 2-marked, the measurements of x, denoted
ljxii is the pair (IF(CL(x))f, IFR(CL(x))j).

Lemma 59 The equality x Up yz " T holds if and only if x Up y'z = T does. The
equality x U, yz = T holds if and only if x U, y'z = T does.

Proof: By structural induction on x and y.

x i Up ýz i Up •z pf. by
C y yz y'z insp.

x X UP z '(x Up z) insp.
T y T T insp.
x T T T insp.

'x 'y '(xTUpyz) '(xUpy'z) ind.
'x y '(xLUpyz) '(xUjpy'z) ind.
X 'y '(xUpyz) '(xUpy'z) ind.

ax ay a (x Up yz) a (x Up y'z) ind.
ax by T T insp.

U



A.6. ADDITIONAL PROPERTIES AND DEFINITIONS 305

Proposition 5 (p. 60) If x and y are 2-marked then x ;• y iff CL(x)//y :$ T.

Proof: First we note that if x is two-marked, the following identities hold.

LR(CL(x)) = F(CL(x)) = F(x)

L(CL(x)) = FR(CL(x))

FR(CL(x)) = FR(LR(x)L(x)) = M(x)L(x)

Then we expand xl CL(y) by the definition of / and simplify to yield pieces A
and B.

CL(x)/iy = (LR(CL(x)) Lj, F(y))' (L(CL(x)) Up FR(y))
= (F(x) U. F(y))' (M(x)L(x) Up FR(y))
= (F(CL(x))U,, F(y))' (M(x)L(x).Up M(y)'L(y))

The entire marked string then differs from T if both A # T and B $ T. By
lemma 59, B # T iff (M(x) L(x) Up M(y) L(y)) # T, which is half of the definition
of ;, definition 10. Observing that the other half of that definition is just A # _ T
completes the proof. M

Proposition 6 (p. 61) If two 2-marked strings have the same measurements, that
is, if the equali.y Ilxii = Ilyll holds, and x - y, then CL(x) = CL(y).

Proof: Since Jlxil = Ilyll we know that IFR(CL(x))l = IFR(CL(y))I. Similarly,
we know that IF(CL(x))I = IF(CL(y))1. We note that all four marked strings
above are clean. We can apply proposition 48 and use symmetry to conclude
that FR(CL(x)) = FR(CL(y)) and F(CL(x)) = F(CL(y)). Thus we conclude that
CL(x) = CL(y). 0

Definition 12 (p. 61) If A is a set of 2-marked strings, all of the same measure-
ments, the notation A denotes the set { x IVy E A.lIi = Ilyll A x 6 y }.

Definition 13 (p. 61) IF x is a marked string, F is a superset of the alphabet,
and (f, 1) is a pair of nonnegative integers, define ext'f,) as follows. Let the pair
(mn) = lixil denote the measurements of x, let f be max(m,f) and let i be
max(n, 1). Then the extension of marked string x to alphabet F with lengths (f, 1)
is defined by the following equation.

extr, y {I yiý x and Ilyll = (, i)}

(i i i)



306 APPENDIX A. A THEORY OF MARKED STRINGS



Appendix B

Formal specification of Hector

B.1 Introduction

This appendix contains excerpts of the formal specification of the Hector micro-
processor. Incomplete portions of the specification are indicated with suspension
points. The specification consists of two main parts.

The first part is the abstract specification. It gives a few definitions, and then
a set of assertions. These assertions specify the expected behavior of Hector. The
first one specifies Hector's response to its reset signal. The next few specify the
response to interrupts. Finally, a large set specify the operation of each of Hector's
instructions, except for those instructions that involve looping behavior.

The second part maps the state, inputs, and outputs of the abstract specifi-
cation onto patterns of operation of the actual circuit. The decomposition of the
computer (whose instruction semantics are specified) into a processor (the object
actually verified) and a memory system (which is merely assumed to be correct)
also occurs in this mapping.

The specification is given in the Scheme-based specification language used by
the prototype verifier. This section was typeset directly from the actual specifi-
cation files. Representative portions of this specification were actually fed to the
verifier, which checked the actual switch-level circuit.

B.2 Notation

The specification is given in a language embedded in the Scheme programming
language [2041, a dialect of Lisp.

307



308 APPENDIX B. FORMAL SPECIFICATION OF HECTOR

B.2.1 Scheme

While not a substitute for an introduction to the language [94], the following terse
description will be helpful to those unfamiliar with Scheme. The basic syntactic
element is a name or symbol. Unlike many programming languages, symbols can
include most characters, except parentheses. Other syntactic elements are num-
bers and strings. The basic syntactic construct is a parenthesized list (which is
known as a symbolic expression, or "S-expression"). Most lists represent function
calls; the first element (the head, or car) of the list denotes the function while
the remaining elements (the tail, or cdr) denote the arguments. All functions,
including those of ordinary arithmetic, follow this syntax. Thus expressions ap-
pear in futiy parenthesized prefix form. Other lists denote "special forms." The
determination of whether a list denotes function application or a special form is
made according to the head of the list. Two important special forms are define
and let. The define special form establishes a definition which binds to a name
(given as the second element of the list) a value (given as the third element of
the list). (However, if instead of a name, a parenthesized list is given, then the
define form defines a function. The head of the parenthesized list gives the name
of the function, and the tail gives its arguments.) The let form establishes local
bindings. For example, (let ((x 1) (y 2)) (+ x y)) corresponds to the com-
mon mathematical usage "let x = 1 and y = 2 in x + y" which denotes 1 + 2,
i.e., 3. Ordinarily, S-expressions are interpreted by these rules, as program text.
However, preceding an S-expression with a quotation mark, causes it to be quoted,
i.e., interpreted literally and treated as data. The head and the tail may of such
expressions may be obtained with the functions car and cdr; new expressions may
be constructed from a head and a tail using cons.

B.2.2 Specification language

The specification language used below makes use of numerous functions whose
definitions are omitted here. Among the most important of these is vec-==, which
takes two vectors1 of Boolean values and returns a Boolean expression indicating
whether or not the two vectors are equal. Another important function is ?:, which
denotes a conditional. The function -> denotes case restriction. The function is
constructs a formula which is true when a circuit node has the specified symbolic
value. The form decomp collects conjuncts of the antecedent and the consequent
of an assertion, and then decomposes the memory system from the processor.

Most other functions should be evident from their names, particularly to C
programmers.

'Here "vector" denotes a conceptual vector, rather than a Scheme vector. Vectors are actually
implemented in the prototype using Scheme lists.



B.3. ABSTRACT SPECIFICATION OF HECTOR 309

In the specification below, trailing slash characters are best read as "prime."
For example, the variables p/ is best read as p'. (Note that "prime" has nothing
to do with the marker in the formulation of marked strings.)

This language is more expressive than the SMAL language defined in Chapter 3.
In fact, it is too expressive. For example, since mappings are written in Scheme,
they can introduce new case variables. This is not allowed by SMAL, and the
semantics is undefined.

B.3 Abstract specification of Hector

;;; Hector specification, in a SMAL-like style
; Derek Beatty 3/93, 5/93.

; Preliminaries

; Types
(define majorOpcode-type (mk-word-type 4))
(define minorOpcode-type (mk-word-type 2))
(define testCode-type (mk-word-type 4))
(define sourceMode-type (mk-word-type 2))
(define destinationlMode-type (mk-word-type 2))
(define addr-type (mk-word-type 16))
(define addrSum-type (mk-word-type 17))
(define reg-type (mk-word-type 4))
(define word-type (mk-word-type 16))
(define control-type (mk-enum-type 'reset 'nmi 'irq 'dma 'sst 'wait

'run2 'run3 'run4 'run5 'run6 'run7))

; System variables
(define mem (state addr-type word-type))
(define reg (state reg-type word-type))
(define cyCC (state bit-type))
(define ovCC (state bit-type))
(define ngCC (state bit-type))
(define zeCC (state bit--type))
(define intCC (state bit-type))
(define control (state control-type))
(define invariant (state bit-type))
(define pending-interrupt (state bit-type))

;;;



310 APPENDIX B. FORMAL SPECIFICATION OF HECTOR

;;; Global definitions
;;;

;; Special registers
(define PC (encodeU 15 reg-type))
(define SP (encodeU 14 reg-type))
(define INT (encodeU 13 reg-type))
(define NMI (encodeU 12 reg-type))
(define SWI (encodeU 11 reg-type))
(define END (encodeU 10 reg-type))
(define BEGN (encodeU 9 reg-type))
(define SIZE (encodeU 8 reg-type))
(define STEP (encodeU 7 reg-type))
(define RO (encodeU 0 reg-type))

;; Binary operation op-codes -----
(define add '(0 0 0 0))
(define addc '(0 0 0 1))
(define sub '(0 0 1 0))
(define and.op '(0 0 1 1))
(define subc '(0 1 0 0))
(define or.op '(0 1 0 1))
(define xor '(0 1 1 0))
;; Unary operation op-codes--------------------
(define ulGroup '(1 0 0 0)) ; Group 1
(define not.op '(0 0))
(define neg '(0 1))
(define inc '(1 0))
(define dec '(1 1))
(define u2Group '(1 0 0 1)) ; Group 2 ------
(define shl '(0 0))
(define rol '(C 1))
(define shr '(1 0))
(define ror '(1 1))
;; Binary test op-codes---------
(define cmp '(1 0 1 0))
(define btst '(1 0 1 1))
;; Conditional branch group op-codes
(define bjscGroup '(1 1 0 0))
(define bra '(0 0))
;; Tests for conditional branch--
(define tvc '(0 0 0 0)) ; overflow clear
(define tpl '(0 0 0 1)) ; plus
(define tge '(0 0 1 0)) ; greater or equal



B.3. ABSTRACT SPECIFICATION OF HECTOR 311

(define trn '(0 0 1 1)) ; never
(define tie '(0 1 0 0)) ; less or equal

(define tne 1(0 1 0 1)) ; not equal
(define tls '(0 1 1 0)) ; less
(define tcc '(0 1 1 1)) ; carry clear
(define tvs '(1 0 0 0)) ; overlow set
(define tmi '(1 001)) ; minus
(define tit (1 0 1 0)) ; less than
(define tra '(1 0 1 1)) ; always
(define tgt '(I 1 0 0)) ; greater than
(define teq '(I 1 0 1)) ; equal
(define thi '(1 1 1 0)) ; higher
(define tcs '(1 1 1 1)) ; carry set
(define jsr '(0 1))
(define swap '(1 0))
(define clr '(1 1))
;; Data movement ----------
(define move '(1 1 0 1)) ;
;; Flag and push group op-codes -

(define tslpGroup '(1 1 1 0))
(define test.op '(0 0))
(define stf '(0 1))
(define ldf '(1 0))
(define push '(1 1))

;; Special group op-codes--------
(define otherGroup '(1 1 1 1))
(define sec-op '(0 0 0))
(define clc.op '(0 0 1))

(define sei.op '(0 1 0))
(define cli.op '(0 1 1))
(define rti-op '(1 0 0))
(define swi.op '(1 0 1))
(define exch '(I 1 0))
(define srch '(1 1 1))

;;; Addressing modes-------------------------------------------
(define regMode '(0 0)) ; Source, Destination, or Branch
(define indMode '(0 1)) ; Source, Destination, or Branch
(define postIncMode '(1 0)) ; Source or Destination
(define relMode '(1 0)) ; Branch
(define indxMode '(1 1)) ; Source, Destination, or Branch

;;; Functions that instructions compute
(define (addFn u v) (vec-add u v))



312 APPENDIX B. FORMAL SPECIFICATION OF HECTOR

(define (addcFn u v cy) (?: cy (vec-+l (vec-add u v))
(vec-add u v)))

(define (subFn u v) (vec-subtract u v))
(define (subcFn u v cy) (?: cy (vec-minus-1 (vec-subtract u v))

(vec-subtract u V)))

;; Functions that binary operations compute

(define (binOp op v u cy ov ng ze)
C?: (vec- op add) (cdr (addFn u v))

(?: (vec-= op addc) (cdr (addcFn u v cy))

(?: (vec-== op sub) (cdr (subFn u v))
(?: (vec-== op subc) (cdr (subcFn u v cy))

C?: (vec-== op and.op) (vec-k& u v)
(?: (vec-= op or.op) (vec-// u v)

(?: (vec-== op xor) (vec-- u v)))))))))

;; Carry condition of binary operations

(define (binCy op v u cy ov ng ze)

(?: (vec- op add) (car (addFn u v))
(?: (vec-= op addc) (car (addcFn u v cy))
(?: (// (vec- op sub) (vec- op cmp))

(vec-< (cons 0 u) (cons 0 v)) ; unsigned test

(?: (vec- op subc)
(vec-< (cons 0 (cons 0 u))

(cons

0 (vec-add v '(0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ,cy))))
(?: (I/ (vec- op and_op) (vec- op btst)) cy

(?: (vec-= op or-op) cy
(?: "vec-= op xor) cy))))))))

;; Overflow condition of binary operations

(define (binOv op v u cy ov ng ze)

(?: (vec-= op add) (&& (! (cadr (addFn u v)) (car u))
( (car u) (car v)))

(?: (vec-== op addc) (&& ( (cadr (addcFn u v cy)) (car u))

! (- (car u) (car v))))
(?: U1/ (vec- op sub) (vec-= op cmp))

(U/ (&& (car v) 0! (car u)) (cadr (subFn u v)))
( 0C! (car v)) (car u) (! (cadr (subFn u W)))

(?: (vec- op subc)

(U/ (k& (car v) (0 (car u)) (cadr (subcFn u v cy)))



B.3. ABSTRACT SPECIFICATION OF HECTOR 313

(&& (0 (car v)) (car u) (! (cadr (subcFn u v cy))))
(U/(I (vec-== op and-.op) (vec-== op, btst)) ov
M? (vec- op or..op) ov
(?: (vec-== op xor) ov))))))

N 6ative conditions of binary operations

(define (binl¶eg op v u cy ov ng ze)
?:(vec-== op add) (cadr CaddFn u v))
(:(vec-== op addc) (cadr (addcFn u v cy))
M? U/1 (vec-== op stb) (vec-== op cmp))

(cadr (subFn u v))
?:(vec-== op subc)

(cadr (subcFn u v cy))
(//(I (vec-== op and-.op) (vec-== op btst)) (car (&& u v)

M? (vec-= op, or-op) (car U1/ u v))
(:(vec- op mor) (car (- u v)))))))

Zero conditions of binary operations

(define (binZer op, v u cy ov ng ze)
(?: (vec-== op add)

(vec-== (cdr (addFn u v)) (encodeU 0 word-type))
(?: (vec-= op addc)

(vec-== (cdr (addcFn u, v cy)) (encodeU 0 word-type))
U?: /I (vec-== op sub) (vec-= op cmp))
(vec-== (cdr (subFn u v)) (encodeU 0 word-type))

(:(vec-= op subc)
(vec-== (cdr (subcFn u v cv)) (encodeU 0 word-type))

M? U/I (vec-= op and-.op) (vec-= op btst))
(vec-= (&& u v) (encodeU 0 word-type))
(:(vec-~ op or-op)
(vec-= (ft u v) (encodeU 0 word-type))

M? (vec-== op xor)
(vec-== (- u v) (encodeU 0 word-type))))))))

Functions and condition code update of unary operators

(define (negate v)
(vec-difference (encodeU 0 word-type) W)

(define (increment v) (vec-41 v)
(define (decrement v) (vec-minus-1 W0

(define (un~p major minor v cy ow ng ze)



314 APPENDIX B. FORMAL SPECIFICATION OF HJECTOR

(:(&& (vec-~ major ulGroup) (vec-~ minor not..op)) 0I v)
(:(&(vec-= major ulGroup) (vec-= minor neg)) (negate v)
(:(&(vec-== major ulGroup) (vec-~ minor inc)) (increment v)

(?: (&& (vec-~ major ulGroup) (vec-~ minor dec)) (decrement v)
(?: (&& (vec-== major u2Group) (vec-== minor shl))

(cdr (append v '(0)))
(:(&& (vec-== major u2Group) (vec-== minor rol))

(cdr (append v (list cy)))
(&:(& (vec-== major u2Group) (vec-== minor slir))

(rdc (append (list (car v)) v))
(:(&& (vec-== major u2Group) (vec-== minor ror))

(rdc (append (list cy) v)))))))))))

(define (unCy major minor v cy ov ng ze)
(:(&& (vec-== major uiGroup) (vec-== minor not-op)) cy
(:(&& (vec-== major ulGroup) (vec-== minor neg))

(vec-== (negate v) (encodeU 0 word'-type))
(&:(& (vec-= major ulGroup) (vec-r.= minor mnc))

(vec-== v (encodeS -1 word-type))
(:(&& (vec-~ major uiGroup) (vec-== minor dec))

(vec-== v (encodeU 0 word-type))
(?: (&& (vec-== major u2Group) (vec-== minor shi)) (car v)
(?: (&& (vec-= major u2Group) (vec-== minor rol)) (car v)

(:(&& (vec-= major u2Group) (vec-== minor slir)) (rac v)
(:(&& (vec-= major u2Group) (vec-~ minor ror))

(rac v))))))))))

(define (un0v major minor v cy ov ng ze)
(:(&& (vec-~ major ulGroup) (vec-== minor not-op)) ov
(:(&& (vec-== major ulGroup) (vec-~ minor neg))

(vec-== (negate v) (encodeU #x8000 word-type))
(:(&& (vec-== major ulGroup) (vec-= minor inc))

(vec-== v (encodeU #x7fff word-type))
(;(&& (vec-~ major ulGroup) (vpc-== minor dec))

(vec-== v (encodeU Ux8000 word-type))
(?: (&& (vec-== major u2Group) (vec-== minor shl)) ov

(:(&& (vec-== major u2Group) (vec-== minor rol)) ov
(&:(& (vec-= major u2Group) (vec-~ minor slir)) ov
(:(&& (vec-== major u2Group) (vec-== minor ror)) ov)))))))))

(define (unlieg major minor v cy ov ng ze)
(?: (&& (vec-~ major ulGroup) (vec-= minor not-op)) 0! (car v))

(:(&& (vec- major uiGroup) (vec-== minor neg))
(car (negate v))



B.3. ABSTRACT SPECIFICATION OF HECTOR 315

(7 (k& (vec-= major ulGroup) (vec-~ minor inc))

(car (increment v))

M? (&& (vec-= major ulGroup) (vec-= minor dec))

(car (decrement W)

?: (&&(ec-== major u2Group) (vec-== minor shi)) (cadr v')

?:(k(vec-~ major u2Group) (vec-== minor rol)) (cadr v)

M? (k& (vec-== major u2Group) (vec-~ minor shr)) (car v)

M? (kk (vec-~ major u2Group) (vec-== minor ror)) cy)))))))

(define (unZer major minor v cy ow ng ze)

M? (&& (vec-== major ulGroup) (vec-== minor not..op))

(vec-== (! v) (encodeU 0 word-type))

(?: (&& (vec- major ulGroup) (vec-== minor neg))

(vec-== (negate v) (encodetl 0 word-type))

M? (&& (vec-= major ulGroup) (vec-== minor inc))

(vec-== (increment v) (encodeU 0 word-type))

M? (k& (vec-= major ulGroup) (vec-~ minor dec))

(vec-== (decrement v) (encodetl 0 word-type))

?:(k& (vec-= major u2Group) (vec-= minor shi))

(vec-== (cdr (append v '(0))) (encodeU 0 word-type))

C:(&& (vec-== major u2Group) (vec-== minor rol))

(vec-~ (cdr (append v (list cy))

(encodetl 0 word-type))
M? Wk (vec- major u2Group) (vec-== minor shr))

(vec-= (rdc (append (list (car v)) W)
(encodeU 0 word-type))

(? U(vec-= major u2Group) (vec- minor ror))

(vec-= (rdc (append (list cy) v))

(encodeU 0 vord-type))))))))

(define (testCond t cy ow ng ze)

(:(vec-== t tvc) (!ov)
(:(vec-== t zpl) C!ng)
M? (vec- 1: tge) 0!( ng ow))

M? (vec- - tin) 0
(?: (vec-== t tle) CI(ze (- ug ov)))

M? (vec- t tis) 0I c ze)

M? (vec-== t tcc) U/ cy z)

(?: (vec-== t tvs) ow

(?: (vec-~ t tit) (- ng ow)

M? (vec-~ t tra) I.
(?: (vec-= t tgt) 0' U/ ze (- ng ow)))



316 APPENDIX B. FORMAL SPECIFICATION OF HECTOR

(?: (vec-" t teq) ze
(:(vec-== t thi) (! (// cy ze))

(?: (vec-== t tcs) cy)))))))))))))))))

;;;

A S S E RT IO N S

;;; Initialization

(define (nit)
(decomp ((cortrol 'reset))

((invariant 0) ; NB: 0 creates proof obligation.
(reg PC (encodeU 0 addr-type))
(reg SP (encodeU 0 addr-type))
(reg INT (encodeU 4 addr-type))
(reg NMI (encodeU 2 addr-type)))))

;;; Non maskable interrupt: push flags and PC, set interrupt flag,
;;; and begin executing at NMI location.

(define (nmi-int)
(decl p addr-type)
(decl s addr-type)
(decl n addr-type)
(decl 1 addr-type) (decl d word-type)
(decl cy bit-type) (decl ov bit-type) (decl ng bit-type)
(decl ze bit-type) (decl int bit-type)
(decl r reg-type) (decl w word-type)
(let* ((s- (decrement s))

(s-- (decrement s-))
(flags (append (list cy ov ng ze int)

)( -)-- -)))-- -

(decomp ((control 'nmi)
(invariant 1)
(mem 1 d '#f)
(-> (C (vec-:- r NMI) (vec-!= r SP) (vec-!= r PC))

(reg r w))
(reg NMI n)
(reg SP s)
(reg PC p)
(cyCC cy) (ovCC or) (ngCC ng) (zeCC ze) (intCC int)
(-> (vec-!= r RO)



B.3. ABSTRACT SPECIFICATION OF HECTOR 317

(exists (W) (reg RO w))))

((invariant 0)
(-> (& (vec-!= 1 s-) (vec-!= 1 s--))

(mem 1 d 'Of))
(-> (vec-!= r SP) (reg r w))
(mem s- flags -4)
(mem s-- p -3)
(cyCC cy) (ovCC ov) (ngCC ng) (zeCC ze) (intCC I)
(reg NMI n)
(rag SP s--)
(reg PC n)))))

(define (irq-int) ... )
(define (dma-int) ... )
(define (sst-int) ... )
(define (wait-int) ... )

;;; Two-operand register-to-register; 2 execution cycles.

(define (twrgrg)
(decl p addr-type)
(decl u word-type) (decl v word-type)
(decl 1 addr-type) (decl d word-type)
(decl dst reg-type) (decl src reg-type)
(decl cy bit-type) (decl ov bit-type) (decl ng bit-type)
(decl ze bit-type) (decl int bit-type)
(decl r reg-type) (decl w word-type)
(-> (U/ (vec-== op add) (vec-s op addc)

(vec-== op sub) (vec-== op subc)
(vec-== op and-op) (vec-== op or.op) (vec-== op xor))

(let* ((p/ (increment p))
(u/ C?: (vec-== src PC) p/ u))
(v/ C?: (vec- dst PC) p/

(?: (vec-== src dst) u v))))
(decomp ((control 'run2)

(invariant 1)
(mem 1 d '#f)
(reg PC p)
(mem p (append op regMode regMode src dst) 0)
(cyCC cy) (ovCC ov) (ngCC ng) (zeCC ze) (intCC int)
(-> (& (vec-!= r PC)

(vec-!= r src) (vec-!= r dst))
(reg r w))



318 APPENDIX B. FORMAL SPECIFICATION OF HECTOR

(-> (vec-!= src PC) (reg src u))

(-> (&& (vec-!= dst PC) (vec-!= src dst)) (reg dst v))
(-> (&& (vec-!= r RO) (vec-!= src RO) (vec-!= dst RO))

(exists (W) (reg RO w))))

((invariant 0)
(-> (&& (vec-!= r PC) (vec-!= r src) (vec-!= r dst))

(reg r w))
(-> (&& (vec-!= src dst) (vec-!= src PC)) (reg src u/))

(-> (vec-!= dst PC) (reg PC p/))
(reg dst (binOp op u/ v/ cy ov ng ze))
(cyCC (binCy op u/ v/ cy ov ng ze))
(ovCC (bin0v op u/ v/ cy ov ng ze))

(ngCC (binNeg op u/ v/ cy ov ng ze))
(zeCC (binZer op u/ v/ cy ov ng ze))

(intCC int)
(mem 1 d '#f))))))

(define (twrgid) ... )

(define (twrgic) ... )
(define (twrgnx) ... )

(define (twidrg) ... )

(define (twidid) ... )

(define (twidic) ... )

(define (twidnx) ... )

(define (twicrg) ... )

(define (twicid) ... )

(define (twicic) ... )
(define (twicnx) ... )

(define (twnxrg) ... )

(define (twnxid) ... )

(define (twnxic) ... )

(define (twnxnx) ... )

(define (mvrgrg) ... )

(define (mvrgid) ... )
(define (mvrgic) ... )

(define (mvrgnx) ... )

(define (mvidrg) ... )

(define (mvidid) ... )

(define (mvidic) ... )

(define (mvidnx) ... )

(define (stfrg) .)
(define (stfid) .)



B.3. ABSTRACT SPECIFICATION OF HECTOR 319

(define (stfic) ... )

(define (stfnx) .)
(define (onerg) ... )

(define (oneid) .)
(define (oneic) ... )
(define (onenx) ... )
(define (nsrgrg) ).
(define (nsrgid) ... )
(define (nsrgic) )
(define (nsrgnx) ).
(define (nsidrg) ... )
(define (nsidid) )
(define (nsidic) )
(define (nsidnx) )
(define (nsicrg) .. )
(define (nsicid) ... )
(define (nsicic) )
(define "(nsicnx) ... )

(define (nsnxrg) .)
(define (nsnxid) ... )

(define (nsnxic) ... )
(define (nsnxnz) ... )

(define (mvicrg) ... )

(define (mvicid) ... )

(define (mvicic) ... )
(define (mvicnz) )
(define (mvnxrg) )
(define (mvnxid) ... )

(define (mvnxic) ... )

(define (mvnxnx) ... )

(define (ldfrg) ... )
(define (ldfid) .)
(define (ldfic) . )
(define (ldfnx) ... )
(define (pshrg) ... )
(define (pshid) .)
(define (pshic) ... )
(define (pshnx) .. )
(define (sec) ... )
(define (rti) ... )
(define (dci) ... )
(define (swi-assn)
(define (sei) ...
(define (cli) ... )



320 APPENDIX B. FORMAL SPECIFICATION OF HECTOR

(define (cbric-n) ... )
(define (cbrnx-n) ... )
(define (cbrrg-n) ... )
(define (cbrid-n) ... )
(define (cbric-t) ... )
(define (cbrnx-t) ... )

(define (cbrrg-t) ... )
(define (cbrid-t) ... )
(define (ccarg-n) ... )
(define (ccaid-n) ... )
(define (ccaic-n) ... )

(define (ccanx-n) ... )
(define (ccarg-t) ... )
(define (ccaid-t) ... )
(define (ccaic-t) ...)
(define (ccanx-t) ... )
(define (swaprg) ... )

(define (swapid) ... )

(define (swapic) ... )

(define (swapnx) ... )

;;; Clear a register; 2 execution cycles.

(define (clrrg)
(decl 1 addr-type)
(decl d word-type)
(decl p addr-type)
(deci src reg-type)
(decl cy bit-type) (decl ov bit-type) (decl ng bit-type)
(decl ze bit-type) (decl int bit-type)
(deol r reg-type) (decl w word-type)
(decomp

((control 'run2)
(pending-interrupt 0)

(invariant 1)

(mem 1 d '*f)
(reg pc p)
(mem p (append bjscGroup regMode clr erc src) 0)
(cyCC cy) (ovCC ov) (ngCC ng) (zeCC ze) (intCC int)
-> (&& (vec-!= r PC) (vec-!= r src))

(reg r w))
(-> (vec-!= src PC)

(exists (w) (reg src w)))
(-> (&& (vec-!= r RO) (vec-!= src RO))



B.3. ABSTRACT SPECIFICATION OF HECTOR 321

(exists (W) (reg RO w))))

((invariant 0)
(mem 1 d '*f)
(-> (k (vec-!= r pc) (vec-!= r src))

(reg r w))
(-> (vec-!= src pc)

(reg pc (increment p)))
(cyCC cy) (ovCC ov) (ngCC ng) (zeCC ze) (intCC int)
(reg src (encodeU 0 word-type)))))

;;; Clear memory location addressed by a register; 3 execution cycles.

(define (clrid)
(decl 1 addr-type)
(decl d word-type)
(decl p addr-type)
(decl V addr-type)
(deci src reg-type)
(decl cy bit-type) (decl ov bit-type) (decl ng bit-type)
(decl ze bit-type) (decl int bit-type)
(decl r reg-type) (decl w word-type)
(let ((b/ (?: (vec-== arc PC) (vec-+l p) b)))

(decomp
((control 'run3)
(invariant 1)
(mem I d 'If)
(reg pc p)
(mem p (append bjscGroup indMode clr src arc) 0)
(cyCC cy) (ovCC ov) (ngCC ng) (zeCC ze) (intCC int)
(-> (&k (vec-!= r PC) (vec-!= r arc))

(reg r w))
(-> (vec-!= arc PC)

(reg src b))
-> (&& (vec-!= r RO) (vec-!= src RO))

(exists (W) (reg RO w))))

((invariant 0)
(mem 1 d 'If)
(-> (&&(vec-!= r PC) (vec-!= r arc))

(reg r w))
(-> (vec-!= arc PC)

(reg arc b))
(reg PC (increment p))



322 APPENDIX B. FORMAL SPECIFICATION OF HECTOR

(cyCC cy) (ovCC ov) (ngCC ng) (zeCC ze) (intCC int)
(mem b/ (encodeU 0 word-type) -1)))))

;;; Clear mem addressed by a register & incr. reg.; 3 execution cycles.

((efine (clric)
(decl 1 addr-type)
(decl d word-type)
(decl p addr-type)
(decl b addr-type)
(decl src reg-type)
(decl cy bit-type) (decl ov bit-type) (decl ng bit-type)
(decl ze bit-type) (decl int bit-type)
(decl r reg-type) (decl w word-type)
(let ((b/ (?: (vec-== src PC) (vec-+l p) b)))

(decomp
((control 'run3)
(invariant 1)
(mem 1 d '#f)
(reg pc p)
(mem p (append bjscGroup postlncMode cdr src src) 0)
(cyCC cy) (ovCC ov) (ngCC ng) (zeCC ze) (intCC int)
(-> (&& (vec-!= r PC) (vec-!= r src))

(reg r w))
(-> (vec-!= src PC)

(reg src b))
(-> (k (vec-!= r RO) (vec-!= src RO))

(exists (w) (reg RO w))))

((invariant 0)
(mem 1 d '#f)
(-> (& (vec-!= r PC) (vec-!= r src))

(reg r w))
(reg src (increment b/))
(-> (vec-!= src PC)

(reg PC (increment p)))
(cyCC cy) (ovCC ov) (ngCC ng) (zeCC ze) (intCC int)
(mem b/ (encodeU 0 word-type) -1)))))

;;; Clear mem addr. given by base + register; 5 execution cycles.

(define (clrnx)
(dec 1 addr-type)
(dec1 d word-type)



B.4. MAPPING ONTO THE HECTOR CHIP 323

(decl p addr-type)
(decl b addr-type)
(decl j addr-type)
(decl v word-type)
(decl src reg-type) (decl r reg-type)
(decl cy bit-type) (decl ov bit-type) (deol ng bit-type)
(decl ze bit-type) (decl int bit-type)
(let C(j/ (?: (vec-== src PC) (vec-+l p) j)))

(decomp
((control 'runS)
(invariant 1)
(mem 1 d '#f)
(reg PC p)
(mem p (append bjscGroup indxMode clr src src) 0)
(mem (increment p) b 2)
(cyCC cy) (ovCC ov) (ngCC ng) (zeCC ze) (intCC int)
(-> (& (vec-!= r PC) (vec-!= r src))

(reg r w))
(-> (vec-!= src PC)

(reg src j))
(-W (k& (vec-!= r R0) (vec-!= src R0))

(exists (w) (reg RO w))))

((invariant 0)
(mem 1 d '#f)
-> (&& (vec-!= r PC) (vec-!= r src))

(reg r w))
(-> (vec-!= src PC)

(reg src j))
(reg PC (increment (increment p)))
(cyCC cy) (ovCC ov) (ngCC ng) (zeCC ze) (intCC int)
(mem (vec-+ b j/) (encodeU 0 word-type) -1)))))

(define (tstrg) ... )
(define (tstid) ... )
(define (tstic) ... )
(define (tstnx) ... )

B.4 Mapping onto the Hector chip

State mappings for Hector ; Derek Beatty 3/93, 5/93.



324 APPENDIX B. FORMAL SPECIFICATION OF HECTOR

;;; This file defines the following state mapping functions:

;;; MEM REG
;; cyCC ovCC ngCC zeCC intCC
;; CONTROL INVARIANT PENDING-INTERRUPT

----

;;; Variable ordering

;;;

(define-var-classes 16 ctl-class reg-class data-class bit-class)
(define-type-class reg-type reg-class)
(define-type-class word-type data-class)
(define-type-class addr-type data-class)
(define-type-class bit-type data-class)

;; Constants

---

(define idle-microstate '(1 1 0 1 1 0 1 0))
Special registers.

(define RO '(0 0 0 0))
(define T1 '(1 0 0 0 0)) ; Not visible to programmer.
(define T2 '(1 0 0 0 1)) ; Not visible to programmer.

;;; Circuit Nodes

Control lines:

(define-nodes (phil "pl") (phi2 "1p2"1)) ; Clocks.
(define-nodes _sst _int _nmi _dma -wait); Active-low control inputs.
(define-nodes (reset-nd "reset") test) ; Active-high control inputs.
(define-nodes rd-wr data-prg _dmack _vma); Bus control outputs.

Bus control line drivers:
(define-nodes

(rd-wr-drive "200_0/REFLO/PROC_0/rd-wr/fake-assert")
(rd-wr-in "200_0/REFLOoPROCO/rd-vr/fake-in")
(data.prg-drive "200_0/REFLO/PROC_0/data-prg/fake-assert")
(data-prg-in "200.0/REFLO/PROC_0/data-prg/f ake-in")
(_dmack-drive "200_.0/REFL.O/PROC_O0/_dmack/fake-assert")



B.4. MAPPING ONTO THE HECTOR CHIP 325

(_dmack-in "200_O/REFLO/PRQCO/_dmack/fake-in")
(_vma-drive "200-O/REFLO/PROC_ O/_vma/fake_ as sert")
(_vma-in "200_.O/REFLO/PROCO/_vma/fake-in"))

Busses:
(define data-bus (make-nvec "d-a" (name-range 0 16)))
(define addr-bus (make-nvec "a-a" (name-range 0 16)))

Bus drivers:
(define data-bus-drive

(make-nvec "200_O/REFLO/PROC_0/d-a/fake.assert" (name-range 0 16)))
(define data-bus-in

(make-nvec "200_0/REFLO/PROC_0/d-a/fake-in" (name-range 0 16)))
(define addr-bus-drive

(make-nvec "200_0/REFLO/PROC_0/a-a/fake-assert' (name-range 0 16)))
(define addr-bus-in

(make-nvec "200_0/REFLO/PROC_0/a-a/fake-in" (name-range 0 16)))
Internal nodes:

(define-nodes fc fv fn fz fi ; Condition codes and flags.
fci fvi fni fzi fii) ; Their input bits.

(define ccodes (list fc fv fn fz fi))
(define regfile ; Reg. array, 18 w. of 16 bits.

(make-ary "r-a.--a" (name-range 0 18) (name-range 0 16)))
(define cc-bits-of-regfile ; Upper 5 bits of reg. array.

(make-ary "tr-a.--a" (name-range 0 18) (name-range 11 16)))
(define non-cc-bits-of-regfile ; Lower 11 bits.

(make-ary "r-a.--a" (name-range 0 18) (name-range 0 11)))

(define src (make-nvec "sr-adrv" (name-range C i6))); Int. source bus.
(define dst (make-nvec "ds-adrv" (name-range 0 16))); " destination bus.
(define u-adr (make-nvec "ra-a" (name-range 0 8))) ; Microcode address.
(define src-adr (make-nvec "src-adr-a" (name-range 0 5))) ; Source adr.
(define dst-adr (make-nvec "dst-adr-a" (name-range 0 5))) ; Dest.
(define-nodes

(nmi-lat "200O0/REFLO/PROCO/DPTHO/CCBO/NMILATO/bit")) ; NMI latch

;; ALU state to be weakend to keep BDD sizes down:

(define nano-addr
(make-nvec "200_ O0/REFL_ O/PROCO/DPTHO/ALUFO/ALUMP_ O0/ in'a'"

(name-range 0 5)))
(define nano-word

(make-nvec "200_0/REFLO/PROC.O/DPTHO/ALUFO/ALUMP_0/out• a"
'(0 1 2 3 4 5 6 7

9 10 11 12 13 14



326 APPENDIX B. FORMAL SPECIFICATION OF HECTOR

1.6 17 18 19 20

22 23 24 25 26 27 28 29 30 31)))
(define src-inv
(append

(make-nvec

"200-0./REFL..../PROC-.0,'DPTILO/ALUF-../ALU-../LALUB. - a/ALUB-0/6-.2906.2384#",
(name-range 0 15))

(make-nvec
"200_0/REFL-../PROC..0/DPTILO/ALUF.../ALU..0/HALUBJ a/ALUB-0I6-.2906-.2384#"

'(0))))
(define dst-inv

(append
(make-nvec

"200-0/REFL-O/PROC-../DPTW../ALUF-.S/ALU-O/LALUB..- a/ALUB-.0/ 6.2874-.2384*"

(name-range 0 15))
(make-nvec

"200-0/REFL..0/PROC-../DPTH-../ALUF0O/ALU-../HALUB- aIALUB..0/6...2874-2384#",
'(0))))

(define cchain
(append

(make-nvec
"200-0./REFL-../PROC-.OfDPTIL.0/ALUF-../ALU-../LALUB... a/ALUB-../SRFF-.0/d"

(name-range 0 15))
(make-nvec
"20O..0/REFL-../PROC..../DPTH-0/ALUF..0/ALU.../HALUB.. alALUB-0/SRFF-..Od"

' (0))))
(define cchain-inv

(append
(make-nvec

"200..0/REFL0O/PROC..0/DPTH.O/ALUF..0/ALU.../LALUB..ja/ALUB-../SRFF...O/d"
(name-range 0 15))

(make-nvec
"200-0/REFL-O/PROCCO/DPTH-O/ALUF-O/ALU-O/HALUB-a/ALUB-O/SB.FF0/-d"
'(0)))).

(define wr (rnake-nvec "wr-al (name-range 0 16))); " destination bus.

(define weaken-alu-state

(append
wr src dat arc-mnv dat-mnv cchain cchain-inv nano-addr nano-vord))

;;Timing

;;Timing:



B.4. MAPPING ONTO THE HECTOR CHIP 327

Time points:
(define (begin-cycle N) (* 7 N))
(define (end-cycle N) (begin-cycle (+ N 1)))

Intervals:
(define (during-cycle N f) (over (begin-cycle N) (end-cycle N) f))
(define (before-phil N f)

(over (+ (begin-cycle N) 0) (+ (begin-cycle N) 1) f))
(define (when-phil-rises N f) (at (+ (begin-cycle N) 1) f))
(define (during-phil N f)

(over (4 (begin-cycle N) 1) (4 (begin-cycle N) 3) f))

(define (amid-phil N f) (at (+ (begin-cycle N) 2) f))
(define (after-phil N f)

(over (+ (begin-cycle N) 3) (+ (begin-cycle N) 4) f))
(define (during-phi2 N f)

(over (+ (begin-cycle N) 4) (+ (begin-cycle N) 6) f))
(define (as-phi2-falls N f)

(over (+ (begin-cycle N) 5) (4 (begin-cycle N) 6) f))
(define (after-phi2 N f)

(over (+ (begin-cycle N) 6) (+ (begin-cycle N) 7) f))
Clock cycle:

(when-phil-rises
N (itf-add-extra true-tempula

(map xtra-weaken-module alu-subntwks)))
(conj (before-phil

N (itf-add-extra true-tempula
(map xtra-weaken-node (append src dst))))

(define (cycle N)
(let* ((hil (is phil 1))

(101 (is phil 0))
(hi2 (is phi2 1))
(1o2 (is phi2 0))
(low (conj lol lo2)))

(conj (before-phil N (conj lol lo2))
(when-phil-rises
N (itf-add-extra

true-tempula
(map xtra-freeze-node-at-X weaken-alu-state)))

(during-phil N (conj hil lo2))
(amid-phil
N (itf-add-extra

true-t empula
(map 7-ra-thaw-node weaken-alu-state)))

(after-p. N (conj lol lo2))
(during-pja12 N (conj lol hi2))



328 APPENDIX B. FORMAL SPECIFICATION OF HECTOR

(after-phi2 N (conj lol lo2))
;; slight overlap wI next cycle:
(before-phil (+ N 1) (conj lol lo2)))))

Multiple cycles:
(define (n-cycles N) (apply conj (map cycle (range 0 N))))
(define (during-cycles beg end f)

(over (begin-cycle beg) (end-cycle end) f))

(define (after n p) (at (end-cycle n) p))

Bidirectional bus:
(define zero-word '(0 0 0 0 0 0 0 0 0 0 0 00 0))
(define ones-word '(I I 1 1 1 1 1 1 1 1 1 1 1 1 1 1))
(define (drive-data-bus) (vec-is data-bus-drive ones-word))
(define (undrive-data-bus) (vec-is data-bus-drive zero-word))
(define (drive-addr-bus) (vec-is addr-bus-drive ones-word))
(define (undrive-addr-bus) (vec-is addr-bus-drive zero-word))
(define (drive-ctl-bus)

(conj (is rd-wr-drive 1) (is data-prg-drive I)
(is _dmack-drive 1) (is _vma-drive W)))

(define (undrive-ctl-bus)
(conj (is rd-wr-drive 0) (is data.prg-drive 0)

(is _dmack-drive 0) (is _vma-drive 0)))
(define (undrive-busses)

(conj (undrive-data-bus) (undrive-addr-bus) (undrive-ctl-bus)))

State Mapping Functions

The MEM predicate.

This predicate indicates data storage in the memory system.
Since the memory system is actually separate from the processor
that we are verifying, the predicate is modified to decompose
the memory state into the actions that the processor takes to

,;; act on that state. It takes an extra argument, a "hint"

establishing the time (in cyclas) when a memory operation occurs.

(define (mem a w hint)
(check-type a addr-type)



B.4. MAPPING ONTO THE HECTOR CHIP 329

(check-type w word-type)
(if (not hint)

;; Hint is '#F: no memory operation actually occurs.
true-tempula

Hint has a value, telling us when the memory operation occurs.
If in the antecedent, a READ operation must occur soon, and
if in the consequent, a WRITE operation must have just occured.

(let (
;; Read: consequent checks address and control bus.
(ca (conj (as-phi2-falls hint

(conj (is _sma 0)

(vec-is addr-bus a)))
(during-phi2 hint

(conj (is rd-wr 1)
(is _dmack 1)))))

;; Read: antecedent asserts data onto data bus.
(aa (conj (as-phi2-falls hint

(conj (drive-data-bus)
(vec-is data-bus-in

(after-phi2 hint (undrive-data-bus))))
;; Write: no antecedent.
(ac true-tempula)
;; Write: consequent checks address, data, and control bus.

(cc (conj (during-phi2 hint
(conj (is rd-wr 0)

(is _dmack 1)))
(as-phi2-falls hint

(conj (is _vma 0)
(vec-is addr-bus a)
(vec-is data-bus w))))))

(make-asp '0 '() (make-adf aa ca ac cc)))))

-----

;;; The REG predicate.
;;,

;; This predicate establishes data storage in the internal
;;; register file.

(define (extend 1st len)
(append! (make-list (- len (length 1st)) 0) 1st))

(define (reg r w)
(check-type r reg-type)



330 APPENDIX B. FORMAL SPECIFICATION OF HECTOR

(check-type w word-.type)
(vec-is (word regfile (extend r 6)) w))

;;-

The condition code predicates.

These establish the values of the processor's condition-code flags.

(define (cyCC b)
(check-type b bit-type)
(is fc b))

(define (ovCC b)
(check-type b bit-type)
(is fv b))

(define (ngCC b)

(check-type b bit-type)
(is fn b))

(define (zeCC b)
(check-type b bit-type)
(is fz b))

(define (intCC b)
(check-type b bit-type)
(is fi b))

The CONTROL predicate.

This predicate establishes the control signals that are applied
to the processor by its environment. This is the only external
input that the (abstract) system (processor plus memory) receives.
Thus, this defines the clocking, the duration of instructions,
and "abnormal" inputs such as interrupts and the reset sequence.

(define (control ctl)
(check-type ctl control-type)
;; Abbreviation for mapping RUN controls of various lengths.
(let* ((normal-controls (conj (is _sst 1)

(is _int 1)



B.4. MAPPING ONTO THE HECTOR CHIP 331

(is _dma 1)
(is -wait 1)

(is reset-nd 0)
(is test 0)))

(make-run

(lambda (run-cycles)
(make-asp ;; Duration:

(end-cycle (- run-cycles 1))
;; Mapped temporal formula:

(conj (at (begin-cycle -2)
(n-cycles (+ run-cycles 2)))

(during-cycles -2 (- run-cycles 3)
(conj normal-controls

(is _nmi 0)))

(during-cycles (- run-cycles 2)
(- run-cycles 1)

(conj normal-controls
(let ()

(decl nmi-bit bit-type)

(exists (nmi-bit)
(is _nmi nmi-bit))))))

Decomposition formulas:

'0))))

;; Mappings for individual abstract control signals.

(case ctl

;; mapping for RESET operation.
((reset)
(let ((reset-cycles 7))

(make-asp ;; Duration:

(end-cycle reset-cycles)
;; Mapped temporal formula:
(conj
(n-cycles (+ reset-cycles 1))
(undrive-busses)
(during-cycles 0 1

(conj (is reset-nd 1)
(is _nmi 1)
(is _sst 1)
(is _int 1)
(is _dma 1)

(is -wait 1)



332 APPENDIX B. FORMAL SPECIFICATION OF HECTOR

(is test 0)))
(during-cycles 2 (- reset-cycles 2)

(conj (is reset-nd 0)
(is _nmi 1)
(is _sst 1)
(is _int 1)
(is _dma 1)
(is -wait 1)
(is test 0)))

(during-cycles (- reset-cycles 1) reset-cycles
(conj (is reset-nd 0)

(let 0
(decl nmi-bit bit-type)
(exists (nmi-bit)

(is _nmi nmi-bit)))
(is _sst 1)
(is _int 1)
(is _dma 1)
(is -wait 1)
(is test 0)))

These are, strictly speaking, wrong.
They do not map onto circuit inputs.
They are needed because of the
conservativism of the switch-level model.

(let 0
(decl w word-type)
(conj
(before-phil 2 (exists (w) (reg NMI w)))
(before-phil 2 (exists (w) (reg RO w)))
(before-phil 5 (exists (w) (reg INT w)))
(before-phil 5 (exists (W) (reg SP w)))
(before-phil 5 (exists (w) (reg PC w))))))

Decomposition formulas:
'0)))

;; Mapping for NMI operation --- non maskable interrupt.
((nmi)
(let ((nmi-cycles 7))

(make-asp ;; Duration:
(end-cycle (- nmi-cycles 1))
;; Mapped temporal formula:
(conj
(at (begin-cycle -2)



B.4. MAPPING ONTO THE HECTOR CHIP 333

(n-cycles (+ nmi-cycles 2)))

(during-cycles -2 -2
(conj normal-controls

(is _nmi 0)))

(during-cycles -1 (- nmi-cycles 3)
(conj normal-controls

(is .nmi W)))

(during-cycles (- nmi-cycles 2) (- nmi-cycles 1)

(conj normal-controls
(let ()

(decl nmi-bit bit-type)

(exists (nmi-bit)
(is _nmi nmi-bit)))))

;; Needed because of switch-level conservatism

;; and model weakening: this says that the temp

;; register bits that don't hold flags do hold

;; some value.

(let 0)
(decl w word-type)
(before-phil 3

(exists (w)
(vec-is (word non-cc-bits-of-regfile

(extend t2 6))
(list-tail w 5))))))

;; Decomposition formulas:

'0)))

((irq) ... )
((dma) ... )
((sst) ... )
((wait) ... )

;; Mapping for RUN controls:

((run2) (make-run 2))

((run3) (make-run 3))

((run4) (make-run 4))

((runS) (make-run 5))

((run6) (make-run 6))

((run7) (make-run 7))

(else
(error 'control "can't happen")))))

-------------------------------------------------------------



334 APPENDIX B. FORMAL SPECIFICATION OF HECTOR

;M; The system invariant.

;; The system invariant is established by the RESET operation and
;;; maintained by all other operations... . Actually, a weaker form
;;; of the invariant is checked, but a stronger one assumed.
;; The difference is made up by electrical effects (bistablity

of postive feedback with gain) that are not captured by the
;;; switch-level model.

(define ctl-type (mk-word-type 6))
(define-type-class ctl-type ctl-class)

(define iO '(1 1 0 1 0 1 1 0))
(define il '(0 0 0 1 1 0 0 0))
(define i2 '(0 0 0 0 0 0 0 1))
(define i3 '(1 1 1 0 0 1 0 0))
(define i4 '(1 0 1 1 0 1 0 0))
(define i5 '(0 1 1 1 0 1 0 0))
(define i6 '(0 0 0 0 1 1 0 1))

(define (invariant b)
(check-type b bit-type)
(decl msel ctl-type)
(decl ipend bit-type)
(conj
(exists (ipend) (after-phil -1 (is nmi-lat ipend)))
(after-phi2 -2
(exists (msel)

(vec-is u-adr
(?: (vec-== msel (encodeU 0 ctl-type)) iO

(?: (vec- msel (encodeU I ctl-type)) ii
(?: (vec-== msel (encodeU 2 ctl-type)) i2
(?: (vec-== msel (encodeU 3 ctl-type)) i3
(?: (vec-= msel (encodeU 4 ctl-type)) i4
(?: (vec-== msel (encodeU 5 ctl-type)) iS

i6)))))))))

(->b
;; Binary values in temporary registers.
;; These must be guaranteed by studying electrical effects.
(let ()

(decl w word-type)
(after-phi2 -1



B.4. MAPPING ONTO THE HECTOR CHIP 335

(conj
(exists (v) (vec-is (word regfile (extend ti 6)) w))
(exists (w) (vec-is (word regfile (extend t2 6)) w))

;;; The NMI latch predicate.

,,; This predicate establishes whether or not an interrupt is pending.

(define (pending-interrupt b)
(check-type b bit-type)
(after-phil -2 (is nmi-lat b)))

;;; End of file containing state mappings for hector.
-- - - - - - - - -- - - - - - - - -- - - - - - - - -- - - - - - - -



336 APPENDIX B. FORMAL SPECIFICATION OF HECTOR

S• m ! ! I Ip


